Hyperspectral biometrics for facial mode: An alternate approach to multimode method

N. Vetrekar, R. Gad
{"title":"Hyperspectral biometrics for facial mode: An alternate approach to multimode method","authors":"N. Vetrekar, R. Gad","doi":"10.1109/ISCO.2014.7103925","DOIUrl":null,"url":null,"abstract":"Use of Biometric systems has been increased in past decades due to increasing demands of security. The unimodal biometric system has to suffer from problems such as intra class variation, noise in the sensor data etc. This problem can be solved using multimodal biometric fusion. In this paper authors have compared the Hyperspectral and multimodal (fingerprint and face) fusion at matching score level. The Hyperspectral images were fused for combinations like 650+710nm, 650+710+770 nm and the performance parameter like False Non Match Rate (FNMR) and False Match Rate (FMR) have been performed. The performance parameters for Hyperspectral imagery outperform that of the facial mode for a single spectral band i.e. 650nm. Also parameters for the Hyperspectral fusion of 650+710nm, 650+710+770nm combinations spectral modes are promising and are comparable for higher order combination to that of multimodal fusion biometrics. It is observed that the Hyperspectral fusion for higher spectral bands combinations is linear improvements in Equal Error Rate (EER) percentage.","PeriodicalId":119329,"journal":{"name":"2014 IEEE 8th International Conference on Intelligent Systems and Control (ISCO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 8th International Conference on Intelligent Systems and Control (ISCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCO.2014.7103925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Use of Biometric systems has been increased in past decades due to increasing demands of security. The unimodal biometric system has to suffer from problems such as intra class variation, noise in the sensor data etc. This problem can be solved using multimodal biometric fusion. In this paper authors have compared the Hyperspectral and multimodal (fingerprint and face) fusion at matching score level. The Hyperspectral images were fused for combinations like 650+710nm, 650+710+770 nm and the performance parameter like False Non Match Rate (FNMR) and False Match Rate (FMR) have been performed. The performance parameters for Hyperspectral imagery outperform that of the facial mode for a single spectral band i.e. 650nm. Also parameters for the Hyperspectral fusion of 650+710nm, 650+710+770nm combinations spectral modes are promising and are comparable for higher order combination to that of multimodal fusion biometrics. It is observed that the Hyperspectral fusion for higher spectral bands combinations is linear improvements in Equal Error Rate (EER) percentage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面部模式的高光谱生物识别:多模式方法的替代方法
在过去的几十年里,由于安全需求的增加,生物识别系统的使用有所增加。单峰生物识别系统存在类内变化、传感器数据噪声等问题。这个问题可以通过多模态生物特征融合来解决。本文在匹配分数水平上比较了高光谱融合和多模态(指纹和人脸)融合。对650+710nm、650+710+770 nm组合的高光谱图像进行了融合,并进行了虚假不匹配率(FNMR)和虚假匹配率(FMR)等性能参数的计算。在单个光谱波段(650nm)下,高光谱成像的性能参数优于人脸模式。650+710nm、650+710+770nm组合光谱模式的高光谱融合参数也很有前景,可以与多模态融合生物识别的高阶组合相比较。结果表明,高波段组合的高光谱融合在等误差率(EER)百分比上呈线性改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced spread spectrum image watermarking with compression-encryption technique Efficient classification mechanism for network intrusion detection system based on data mining techniques: A survey Automated process for assessment of learners programming assignments Agpest: An efficient rule-based expert system to prevent pest diseases of rice & wheat crops Segmentation of cells with inclusions in plant cross sectional images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1