A probabilistic image model for smoothing and compression

Chun-hung Li, P. Yuen, P. Tam
{"title":"A probabilistic image model for smoothing and compression","authors":"Chun-hung Li, P. Yuen, P. Tam","doi":"10.1109/ITCC.2000.844180","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of edge preserving smoothing in image processing is tackled by combining a noise corruption model and a region and edge image model. The derivation of the probability model for the first order difference in the gray levels of the region pixels and edge pixels leads to a non-linear filter with coefficients as functions of the estimated noise variance and edge intensity. Such a model-based approach allows the design of improved filters for noise filtering and image compression. Experimental results demonstrate the improved performance of the filter for both synthetic and natural images.","PeriodicalId":146581,"journal":{"name":"Proceedings International Conference on Information Technology: Coding and Computing (Cat. No.PR00540)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Conference on Information Technology: Coding and Computing (Cat. No.PR00540)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITCC.2000.844180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, the problem of edge preserving smoothing in image processing is tackled by combining a noise corruption model and a region and edge image model. The derivation of the probability model for the first order difference in the gray levels of the region pixels and edge pixels leads to a non-linear filter with coefficients as functions of the estimated noise variance and edge intensity. Such a model-based approach allows the design of improved filters for noise filtering and image compression. Experimental results demonstrate the improved performance of the filter for both synthetic and natural images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于平滑和压缩的概率图像模型
本文将噪声损坏模型与区域和边缘图像模型相结合,解决了图像处理中的边缘保持平滑问题。对区域像素和边缘像素的一阶灰度差的概率模型进行推导,得到一个非线性滤波器,其系数是估计的噪声方差和边缘强度的函数。这种基于模型的方法允许设计用于噪声过滤和图像压缩的改进滤波器。实验结果表明,该滤波器对合成图像和自然图像都有较好的处理效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simple collusion-secure fingerprinting schemes for images Object-relational database management system (ORDBMS) using frame model approach Dynamic adaptive forward error control framework for image transmission over lossy networks General-purpose processor Huffman encoding extension A robust parallel architecture for adaptive color quantization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1