{"title":"Learning Color Names from Real-World Images","authors":"Joost van de Weijer, C. Schmid, J. Verbeek","doi":"10.1109/CVPR.2007.383218","DOIUrl":null,"url":null,"abstract":"Within a computer vision context color naming is the action of assigning linguistic color labels to image pixels. In general, research on color naming applies the following paradigm: a collection of color chips is labelled with color names within a well-defined experimental setup by multiple test subjects. The collected data set is subsequently used to label RGB values in real-world images with a color name. Apart from the fact that this collection process is time consuming, it is unclear to what extent color naming within a controlled setup is representative for color naming in real-world images. Therefore we propose to learn color names from real-world images. Furthermore, we avoid test subjects by using Google Image to collect a data set. Due to limitations of Google Image this data set contains a substantial quantity of wrongly labelled data. The color names are learned using a PLSA model adapted to this task. Experimental results show that color names learned from real-world images significantly outperform color names learned from labelled color chips on retrieval and classification.","PeriodicalId":351008,"journal":{"name":"2007 IEEE Conference on Computer Vision and Pattern Recognition","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"199","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2007.383218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 199
Abstract
Within a computer vision context color naming is the action of assigning linguistic color labels to image pixels. In general, research on color naming applies the following paradigm: a collection of color chips is labelled with color names within a well-defined experimental setup by multiple test subjects. The collected data set is subsequently used to label RGB values in real-world images with a color name. Apart from the fact that this collection process is time consuming, it is unclear to what extent color naming within a controlled setup is representative for color naming in real-world images. Therefore we propose to learn color names from real-world images. Furthermore, we avoid test subjects by using Google Image to collect a data set. Due to limitations of Google Image this data set contains a substantial quantity of wrongly labelled data. The color names are learned using a PLSA model adapted to this task. Experimental results show that color names learned from real-world images significantly outperform color names learned from labelled color chips on retrieval and classification.