Sentinel: A Multi-institution Enterprise Scale Platform for Data-driven Cybersecurity Research

Alastair Nottingham, Molly Buchanan, Mark Gardner, Jason Hiser, J. Davidson
{"title":"Sentinel: A Multi-institution Enterprise Scale Platform for Data-driven Cybersecurity Research","authors":"Alastair Nottingham, Molly Buchanan, Mark Gardner, Jason Hiser, J. Davidson","doi":"10.1109/ISSREW55968.2022.00075","DOIUrl":null,"url":null,"abstract":"Current cybersecurity research is constrained by the general scarcity of large, realistic, labeled network traffic datasets. To address said scarcity, this paper introduces Sentinel: a multi-enterprise scientific instrument developed to support data-driven cybersecurity research. Sentinel provides researchers access to virtual computing infrastructure and petabytes of data collected over several years from network sensors at two large, disjoint educational institutions - the University of Virginia and Virginia Tech. The network dataset is supplemented by multi-modal malware activity logs generated by attack recreation exercises which realistically integrate ground truth into collected edge sensor data. To mitigate risks associated with providing access to enterprise network sensor logs, Sentinel uses a combination of a code-to-data policy, data usage agreements, and pattern-preserving anonymization. Sentinel has been used as part of a government-funded effort to investigate new machine learning algorithms, cybersecurity forensics, and data retention techniques.","PeriodicalId":178302,"journal":{"name":"2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSREW55968.2022.00075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Current cybersecurity research is constrained by the general scarcity of large, realistic, labeled network traffic datasets. To address said scarcity, this paper introduces Sentinel: a multi-enterprise scientific instrument developed to support data-driven cybersecurity research. Sentinel provides researchers access to virtual computing infrastructure and petabytes of data collected over several years from network sensors at two large, disjoint educational institutions - the University of Virginia and Virginia Tech. The network dataset is supplemented by multi-modal malware activity logs generated by attack recreation exercises which realistically integrate ground truth into collected edge sensor data. To mitigate risks associated with providing access to enterprise network sensor logs, Sentinel uses a combination of a code-to-data policy, data usage agreements, and pattern-preserving anonymization. Sentinel has been used as part of a government-funded effort to investigate new machine learning algorithms, cybersecurity forensics, and data retention techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
哨兵:一个多机构企业规模的数据驱动网络安全研究平台
目前的网络安全研究受到普遍缺乏大型、现实、有标签的网络流量数据集的限制。为了解决上述问题,本文介绍了Sentinel:一种多企业科学仪器,用于支持数据驱动的网络安全研究。Sentinel为研究人员提供了访问虚拟计算基础设施和数年来从弗吉尼亚大学和弗吉尼亚理工大学这两家大型、脱节的教育机构的网络传感器收集的pb级数据的机会。网络数据集由攻击再现练习生成的多模态恶意软件活动日志补充,这些活动日志实际地将地面真相整合到收集的边缘传感器数据中。为了降低与提供对企业网络传感器日志的访问相关的风险,Sentinel使用了代码到数据策略、数据使用协议和模式保留匿名化的组合。Sentinel已被用作政府资助项目的一部分,用于研究新的机器学习算法、网络安全取证和数据保留技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using Complexity Metrics with Hotspot Analysis to Support Software Sustainability Evaluating Human Locomotion Safety in Mobile Robots Populated Environments Performance Bottleneck Analysis of Drone Computation Offloading to a Shared Fog Node Early Software Defect Prediction: Right-Shifting Software Effort Data into a Defect Curve A Survey on Autonomous Driving System Simulators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1