{"title":"Thermodynamic Model of Criticality in the Cortex Based On EEG/ECOG Data","authors":"R. Kozma, M. Puljic, W. Freeman","doi":"10.1002/9783527651009.CH7","DOIUrl":null,"url":null,"abstract":"Criticality in the cortex emerges from the seemingly random interaction of microscopic components and produces higher cognitive functions at mesoscopic and macroscopic scales. Random graphs and percolation theory provide natural means to de- scribe critical regions in the behavior of the cortex and they are proposed here as novel mathematical tools helping us deciphering the language of the brain.","PeriodicalId":298664,"journal":{"name":"arXiv: Neurons and Cognition","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Neurons and Cognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9783527651009.CH7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35
Abstract
Criticality in the cortex emerges from the seemingly random interaction of microscopic components and produces higher cognitive functions at mesoscopic and macroscopic scales. Random graphs and percolation theory provide natural means to de- scribe critical regions in the behavior of the cortex and they are proposed here as novel mathematical tools helping us deciphering the language of the brain.