Enabling enterprise mashups over unstructured text feeds with InfoSphere MashupHub and SystemT

David E. Simmen, Frederick Reiss, Yunyao Li, Suresh Thalamati
{"title":"Enabling enterprise mashups over unstructured text feeds with InfoSphere MashupHub and SystemT","authors":"David E. Simmen, Frederick Reiss, Yunyao Li, Suresh Thalamati","doi":"10.1145/1559845.1559999","DOIUrl":null,"url":null,"abstract":"Enterprise mashup scenarios often involve feeds derived from data created primarily for eye consumption, such as email, news, calendars, blogs, and web feeds. These data sources can test the capabilities of current data mashup products, as the attributes needed to perform join, aggregation, and other operations are often buried within unstructured feed text. Information extraction technology is a key enabler in such scenarios, using annotators to convert unstructured text into structured information that can facilitate mashup operations. Our demo presents the integration of SystemT, an information extraction system from IBM Research, with IBM's InfoSphere MashupHub. We show how to build domain-specific annotators with SystemT's declarative rule language, AQL, and how to use these annotators to combine structured and unstructured information in an enterprise mashup.","PeriodicalId":344093,"journal":{"name":"Proceedings of the 2009 ACM SIGMOD International Conference on Management of data","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2009 ACM SIGMOD International Conference on Management of data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1559845.1559999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Enterprise mashup scenarios often involve feeds derived from data created primarily for eye consumption, such as email, news, calendars, blogs, and web feeds. These data sources can test the capabilities of current data mashup products, as the attributes needed to perform join, aggregation, and other operations are often buried within unstructured feed text. Information extraction technology is a key enabler in such scenarios, using annotators to convert unstructured text into structured information that can facilitate mashup operations. Our demo presents the integration of SystemT, an information extraction system from IBM Research, with IBM's InfoSphere MashupHub. We show how to build domain-specific annotators with SystemT's declarative rule language, AQL, and how to use these annotators to combine structured and unstructured information in an enterprise mashup.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用InfoSphere MashupHub和SystemT在非结构化文本提要上启用企业mashup
企业mashup场景通常涉及从主要用于视觉消费的数据派生的提要,例如电子邮件、新闻、日历、博客和web提要。这些数据源可以测试当前数据mashup产品的功能,因为执行连接、聚合和其他操作所需的属性通常隐藏在非结构化提要文本中。在这种情况下,信息提取技术是一个关键的推动因素,它使用注释器将非结构化文本转换为结构化信息,从而促进mashup操作。我们的演示演示了SystemT(来自IBM Research的信息提取系统)与IBM的InfoSphere MashupHub的集成。我们将展示如何使用SystemT的声明性规则语言AQL构建特定于领域的注释器,以及如何使用这些注释器在企业mashup中组合结构化和非结构化信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cross-tier, label-based security enforcement for web applications Estimating the confidence of conditional functional dependencies Session details: Research session 15: nearest neighbor search Session details: Research session 8: column stores Incremental maintenance of length normalized indexes for approximate string matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1