Empowering Fast Incremental Computation over Large Scale Dynamic Graphs

Charith Wickramaarachchi, C. Chelmis, V. Prasanna
{"title":"Empowering Fast Incremental Computation over Large Scale Dynamic Graphs","authors":"Charith Wickramaarachchi, C. Chelmis, V. Prasanna","doi":"10.1109/IPDPSW.2015.136","DOIUrl":null,"url":null,"abstract":"Unprecedented growth of online social networks, communication networks and internet of things have given birth to large volume, fast changing datasets. Data generated from such systems have an inherent graph structure in it. Updates in staggering frequencies (e.g. edges created by message exchanges in online social media) impose a fundamental requirement for real-time processing of unruly yet highly interconnected data. As a result, large-scale dynamic graph processing has become a new research frontier in computer science. In this paper, we present a new vertex-centric hierarchical bulk synchronous parallel model for distributed processing of dynamic graphs. Our model allows users to easily compose static graph algorithms similar to the widely used vertex-centric model. It also enables incremental processing of dynamic graphs by automatically executing user composed static graph algorithms in an incremental manner. We map widely used single source shortest path and connected component algorithms to this model and empirically analyze the performance on real-world large scale graphs. Experimental results show that our model improves the performance of both static and dynamic graph computation compared to the vertex-centric model by reducing the global synchronization overhead.","PeriodicalId":340697,"journal":{"name":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2015.136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Unprecedented growth of online social networks, communication networks and internet of things have given birth to large volume, fast changing datasets. Data generated from such systems have an inherent graph structure in it. Updates in staggering frequencies (e.g. edges created by message exchanges in online social media) impose a fundamental requirement for real-time processing of unruly yet highly interconnected data. As a result, large-scale dynamic graph processing has become a new research frontier in computer science. In this paper, we present a new vertex-centric hierarchical bulk synchronous parallel model for distributed processing of dynamic graphs. Our model allows users to easily compose static graph algorithms similar to the widely used vertex-centric model. It also enables incremental processing of dynamic graphs by automatically executing user composed static graph algorithms in an incremental manner. We map widely used single source shortest path and connected component algorithms to this model and empirically analyze the performance on real-world large scale graphs. Experimental results show that our model improves the performance of both static and dynamic graph computation compared to the vertex-centric model by reducing the global synchronization overhead.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
授权快速增量计算在大规模动态图形
在线社交网络、通信网络和物联网的空前增长催生了海量、快速变化的数据集。这些系统生成的数据具有固有的图形结构。惊人频率的更新(例如,在线社交媒体上的消息交换产生的边缘)对实时处理难以控制但高度互联的数据提出了基本要求。因此,大规模动态图处理已成为计算机科学的一个新的研究前沿。本文提出了一种新的以顶点为中心的分层批量同步并行模型,用于动态图的分布式处理。我们的模型允许用户轻松地编写静态图形算法,类似于广泛使用的以顶点为中心的模型。它还通过以增量方式自动执行用户组成的静态图形算法来支持动态图形的增量处理。我们将广泛使用的单源最短路径算法和连通分量算法映射到该模型中,并对该模型在实际大尺度图上的性能进行了实证分析。实验结果表明,与以顶点为中心的模型相比,我们的模型通过减少全局同步开销,提高了静态和动态图计算的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accelerating Large-Scale Single-Source Shortest Path on FPGA Relocation-Aware Floorplanning for Partially-Reconfigurable FPGA-Based Systems iWAPT Introduction and Committees Computing the Pseudo-Inverse of a Graph's Laplacian Using GPUs Optimizing Defensive Investments in Energy-Based Cyber-Physical Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1