NUMERICAL INVESTIGATION OF THE SEPARATED FLOW OVER A SMOOTHLY CONTOURED RAMP

B. Wasistho, K. Squires
{"title":"NUMERICAL INVESTIGATION OF THE SEPARATED FLOW OVER A SMOOTHLY CONTOURED RAMP","authors":"B. Wasistho, K. Squires","doi":"10.1615/tsfp2.2310","DOIUrl":null,"url":null,"abstract":"Large Eddy Simulation (LES) and ReynoldsaveragedNavier-Stokes(RANS)calculationshave been used to predict the development, separation, reattachmentand downstreamrecovery of the flow over a smoothlycontouredramp. The statisticallytwo-dimensionalupstreamflow separatesalong the ramp surfaceand then reattaches downstreamon a flat section. A canonicalflatplate turbulent boundary layer at a momentum thicknessReynolds number1100, and having a boundarylayer thickness , is introduced four ramplengthsupstreamof theonsetof curvature. Subgrid-scale(SGS)stressesin theLES are closedusingthedynamiceddyviscositymodelof Germanoet al. (1991). RANS calculationsof the steady-statesolutionareperformedusingtwo leading models: Spalart-Allmaras(Spalart-Allmaras 1994) and (Durbin 1991). Mean flow predictionsobtainedusingall the modelsagreewell with theexperimentalmeasurements of Songet al. (2000). Boundarylayer detachment occursalong the curved section( ) with reattachmentat roughly . Theprimary turbulent shearstresssharplyincreasesin theseparated region andLES predictionsof theshearstressdevelopmentareaccurate.RANS estimationsof the shearstressarebelow thedatain theseparatedregion,thoughreasonablefurtherdownstream. INTRODUCTION AND OBJECTIVES Separatedboundary layers are a challenging subsetof flows that may be generallyclassified as ‘non-equilibrium’. Non-equilibriumboundary currentaddress:Centerfor Simulationof AdvancedRockets,Universityof Illinois, Urbana,Illinois 61801,USA layersarethe norm, ratherthanthe exception,in engineeringapplications.Theimportanceof additional lengthscalesto describingtheflow and/ora significantimbalancebetweenproductionanddissipationaretwo featureswhich characterizethese flows. An adverse pressuregradient boundary layer approachingseparationdevelops an inflection point, the height of which is an additional importantlengthscale.Turbulentstresses, for example,develop large peaksaroundthe inflection point andboundarylayerrecovery following reattachmentshouldbeexpectedto besensiti ve to this lengthscale. Theseandotherfeaturesof separatedflowssubstantiallychallengepredicti ve methods.The vast majority of engineeringpredictionsare obtained from solutionsof the Reynolds-averagedNavierStokes (RANS) equations.In flows not far from equilibrium, the boundaryconditionsthat define largescalestructuresremainnearlyunchangedand theleadingRANSmodelsaretypically adequate. In separatedflows, however, RANS models often yield mixed results (e.g., see Apsley and Leschziner1999),providing onerationalefor use of techniquessuch as Large Eddy Simulation (LES). In LES,thelarge,energy-containingscales of motion areresolved on the meshandonly the small, subgridscalesare modeled. LES predictionsarelesssensiti veto modelingerrorsthantheir RANS counterparts. This featureshouldbeanadvantagein predictionof flows far from thecalibration rangeof RANS modelsand in regimeswith multiple perturbations(e.g., in pressuregradient, streamlinecurvature,roughness, etc.). Assessment of simulation techniquesfor predicting separatedboundarylayersis complicated by the fact that thereis relatively strongcoupling betweenthefreestreamandboundarylayer. Thisin turnincreasesthesensiti vity of theflow to parametersnotdirectlyconnectedto theturbulencemodel andmay not allow oneto easily isolatethe cause of discrepancies betweennumericalsimulationand experiment.Therefore,it is usefulin any studydirectedtowardsrefinedevaluationof techniquesand modelsthatcarefulevaluationof abaselinecasebe established. Oneof the overall aimsin this work is prediction of theeffectof Reynoldsnumberonseparated boundarylayers(seealsoSongandEaton2001in thisvolume).In thepresentcontributiontheflow at moderateReynoldsnumberis predictedusingLES andRANS in orderto assesstheaccuracy of each techniqueaswell asto investigatesomeof theunderlyingcharacteristicsof theflow. Theparticular flow underconsiderationis the statistically twodimensional boundarylayerwhichseparates overa smoothlycontouredramp(Figure1). Thelocation of boundarylayer detachment is not fixed by the geometryandtheflow providesa reasonablywelldefinedplatformfor investigatingtheprocessesof reattachment and downstreamrecovery. Experimentalmeasurements from Songet al. (2000)are usedto evaluatethepredictions.","PeriodicalId":438618,"journal":{"name":"Proceeding of Second Symposium on Turbulence and Shear Flow Phenomena","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of Second Symposium on Turbulence and Shear Flow Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/tsfp2.2310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Large Eddy Simulation (LES) and ReynoldsaveragedNavier-Stokes(RANS)calculationshave been used to predict the development, separation, reattachmentand downstreamrecovery of the flow over a smoothlycontouredramp. The statisticallytwo-dimensionalupstreamflow separatesalong the ramp surfaceand then reattaches downstreamon a flat section. A canonicalflatplate turbulent boundary layer at a momentum thicknessReynolds number1100, and having a boundarylayer thickness , is introduced four ramplengthsupstreamof theonsetof curvature. Subgrid-scale(SGS)stressesin theLES are closedusingthedynamiceddyviscositymodelof Germanoet al. (1991). RANS calculationsof the steady-statesolutionareperformedusingtwo leading models: Spalart-Allmaras(Spalart-Allmaras 1994) and (Durbin 1991). Mean flow predictionsobtainedusingall the modelsagreewell with theexperimentalmeasurements of Songet al. (2000). Boundarylayer detachment occursalong the curved section( ) with reattachmentat roughly . Theprimary turbulent shearstresssharplyincreasesin theseparated region andLES predictionsof theshearstressdevelopmentareaccurate.RANS estimationsof the shearstressarebelow thedatain theseparatedregion,thoughreasonablefurtherdownstream. INTRODUCTION AND OBJECTIVES Separatedboundary layers are a challenging subsetof flows that may be generallyclassified as ‘non-equilibrium’. Non-equilibriumboundary currentaddress:Centerfor Simulationof AdvancedRockets,Universityof Illinois, Urbana,Illinois 61801,USA layersarethe norm, ratherthanthe exception,in engineeringapplications.Theimportanceof additional lengthscalesto describingtheflow and/ora significantimbalancebetweenproductionanddissipationaretwo featureswhich characterizethese flows. An adverse pressuregradient boundary layer approachingseparationdevelops an inflection point, the height of which is an additional importantlengthscale.Turbulentstresses, for example,develop large peaksaroundthe inflection point andboundarylayerrecovery following reattachmentshouldbeexpectedto besensiti ve to this lengthscale. Theseandotherfeaturesof separatedflowssubstantiallychallengepredicti ve methods.The vast majority of engineeringpredictionsare obtained from solutionsof the Reynolds-averagedNavierStokes (RANS) equations.In flows not far from equilibrium, the boundaryconditionsthat define largescalestructuresremainnearlyunchangedand theleadingRANSmodelsaretypically adequate. In separatedflows, however, RANS models often yield mixed results (e.g., see Apsley and Leschziner1999),providing onerationalefor use of techniquessuch as Large Eddy Simulation (LES). In LES,thelarge,energy-containingscales of motion areresolved on the meshandonly the small, subgridscalesare modeled. LES predictionsarelesssensiti veto modelingerrorsthantheir RANS counterparts. This featureshouldbeanadvantagein predictionof flows far from thecalibration rangeof RANS modelsand in regimeswith multiple perturbations(e.g., in pressuregradient, streamlinecurvature,roughness, etc.). Assessment of simulation techniquesfor predicting separatedboundarylayersis complicated by the fact that thereis relatively strongcoupling betweenthefreestreamandboundarylayer. Thisin turnincreasesthesensiti vity of theflow to parametersnotdirectlyconnectedto theturbulencemodel andmay not allow oneto easily isolatethe cause of discrepancies betweennumericalsimulationand experiment.Therefore,it is usefulin any studydirectedtowardsrefinedevaluationof techniquesand modelsthatcarefulevaluationof abaselinecasebe established. Oneof the overall aimsin this work is prediction of theeffectof Reynoldsnumberonseparated boundarylayers(seealsoSongandEaton2001in thisvolume).In thepresentcontributiontheflow at moderateReynoldsnumberis predictedusingLES andRANS in orderto assesstheaccuracy of each techniqueaswell asto investigatesomeof theunderlyingcharacteristicsof theflow. Theparticular flow underconsiderationis the statistically twodimensional boundarylayerwhichseparates overa smoothlycontouredramp(Figure1). Thelocation of boundarylayer detachment is not fixed by the geometryandtheflow providesa reasonablywelldefinedplatformfor investigatingtheprocessesof reattachment and downstreamrecovery. Experimentalmeasurements from Songet al. (2000)are usedto evaluatethepredictions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光滑坡道上分离流动的数值研究
利用大涡模拟(LES)和reynolds - saveragednavier - stokes (RANS)计算来预测流动在光滑轮廓波上的发展、分离、再附着和下游恢复。统计上二维的上游水流沿着坡道表面分离,然后重新连接到下游的平坦部分。引入了一个动量厚度为1100,雷诺数为1100,边界层厚度为1的标准平板湍流边界层,该边界层具有曲率起始的四个横长超流。使用Germanoet al.(1991)的动态粘滞模型对es中的亚网格尺度(SGS)应力进行了封闭。稳态解的RANS计算使用两个主要模型进行:Spalart-Allmaras(Spalart-Allmaras 1994)和(Durbin 1991)。使用所有模型获得的平均流量预测与Songet等人(2000)的实验测量结果非常吻合。沿曲线段()发生边界层剥离,并大致重新附着。主要湍流剪切应力在分离区域急剧增加,les对剪切应力发展的预测是准确的。剪切应力的RANS估计低于这些分离区域的数据,尽管在更下游是合理的。分离边界层是流动的一个具有挑战性的子集,通常可归类为“非平衡”。非平衡边界当前地址:先进火箭模拟中心,伊利诺伊大学,厄巴纳,伊利诺斯州61801,美国在工程应用中,分层是常态,而不是例外。额外的长度尺度对描述流动和/或生产和耗散之间的显著平衡的重要性是表征这些流动的两个特征。接近分离的逆压梯度边界层形成一个拐点,其高度是另一个重要的长度尺度。例如,湍流应力在拐点和边界层周围形成大的峰值,重新连接后的边界层恢复应该对这个长度尺度敏感。分离流的这些和其他特征对预测方法构成了极大的挑战。绝大多数工程预测都是从雷诺平均navier - stokes (RANS)方程的解中获得的。在离平衡不远的流动中,定义大规模结构的边界条件几乎保持不变,主要的grans模型通常是足够的。然而,在分离流中,RANS模型通常产生混合结果(例如,见Apsley和Leschziner1999),为使用大涡模拟(LES)等技术提供了参考。在LES中,大的、包含能量的运动尺度在网格上被分解,而小的、子网格尺度被建模。与RANS相比,LES预测对建模错误的敏感度更低。这一特征在预测远离RANS模型校准范围的流动以及具有多重扰动(例如:RANS模型)的情况时具有优势。(如压力梯度、流线曲率、粗糙度等)。由于自由边界层和边界层之间存在相对较强的耦合,对分离边界层的预测模拟技术的评估变得复杂。这反过来又增加了流动对与湍流模型没有直接联系的参数的敏感性,并且可能不允许人们容易地隔离数值模拟和实验之间差异的原因。因此,在任何旨在对技术和模型进行精确评估的研究中,建立仔细的基线评估都是有用的。这项工作的总体目标之一是预测雷诺数对分离边界层的影响(参见本卷中的songanddeaton2001)。在目前的贡献中,使用les和rans预测了适度雷诺数的流量,以便评估每种技术的准确性,以及调查流量的一些潜在特征。所考虑的特殊流动是统计学上的二维边界层,它在光滑的轮廓上分离(图1)。边界层分离的位置不是由几何形状固定的,流动为研究再附着和下游恢复的过程提供了一个相当明确的平台。Songet等人(2000)的实验测量结果被用来评估这些预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MODELING OF TURBULENT MELT CONVECTION DURING CZOCHRALSKI BULK CRYSTAL GROWTH THE COMPUTATION OF FLOW AND HEAT TRANSFER THROUGH SQUARE-ENDED U-BENDS, USING LOW-REYNOLDS-NUMBER MODELS RELATIONSHIP BETWEEN WALL PRESSURE FLUCTUATIONS AND STREAMWISE VORTICITY IN A TURBULENT BOUNDARY LAYER REYNOLDS-NUMBER DEPENDENCE OF STREAMWISE VELOCITY FLUCTUATIONS IN TURBULENT PIPE FLOW SPATIAL DNS OF THE FLOW TRANSITION OF A RECTANGULAR BUOYANT REACTING FREE-JET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1