{"title":"A compressed domain change detection algorithm for RTP streams in video surveillance applications","authors":"Marcus Laumer, P. Amon, A. Hutter, André Kaup","doi":"10.1109/MMSP.2011.6093838","DOIUrl":null,"url":null,"abstract":"This paper presents a novel change detection algorithm for the compressed domain. Many video surveillance systems in practical use transmit their video data over a network by using the Real-time Transport Protocol (RTP). Therefore, the presented algorithm concentrates on analyzing RTP streams to detect major changes within contained video content. The paper focuses on a reliable preselection for further analysis modules by decreasing the number of events to be investigated. The algorithm is designed to work on scenes with mainly static background, like in indoor video surveillance streams. The extracted stream elements are RTP timestamps and RTP packet sizes. Both values are directly accessible by efficient byte-reading operations without any further decoding of the video content. Hence, the proposed approach is codec-independent, while at the same time its very low complexity enables the use in extensive video surveillance systems. About 40,000 frames per second of a single RTP stream can be processed on an Intel® CoreTM 2 Duo CPU at 2 GHz and 2 GB RAM, without decreasing the efficiency of the algorithm.","PeriodicalId":214459,"journal":{"name":"2011 IEEE 13th International Workshop on Multimedia Signal Processing","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 13th International Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2011.6093838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper presents a novel change detection algorithm for the compressed domain. Many video surveillance systems in practical use transmit their video data over a network by using the Real-time Transport Protocol (RTP). Therefore, the presented algorithm concentrates on analyzing RTP streams to detect major changes within contained video content. The paper focuses on a reliable preselection for further analysis modules by decreasing the number of events to be investigated. The algorithm is designed to work on scenes with mainly static background, like in indoor video surveillance streams. The extracted stream elements are RTP timestamps and RTP packet sizes. Both values are directly accessible by efficient byte-reading operations without any further decoding of the video content. Hence, the proposed approach is codec-independent, while at the same time its very low complexity enables the use in extensive video surveillance systems. About 40,000 frames per second of a single RTP stream can be processed on an Intel® CoreTM 2 Duo CPU at 2 GHz and 2 GB RAM, without decreasing the efficiency of the algorithm.