Forecasting Abilities of MIMO and SISO Neural Networks: A Comparative Study using Telecommunication Traffic Data

F. Oduro-Gyimah, K. Boateng
{"title":"Forecasting Abilities of MIMO and SISO Neural Networks: A Comparative Study using Telecommunication Traffic Data","authors":"F. Oduro-Gyimah, K. Boateng","doi":"10.1109/ICCMA.2019.00020","DOIUrl":null,"url":null,"abstract":"The study compared the forecasting performance of two multiple-input and multiple-output (MIMO) and two single-input and single-output (SISO) neural networks using 4G network traffic data aggregated into daily, weekly and monthly time spans. To explore the best configuration of SISO and MIMO neural networks, the empirical traffic data of 1-input, 2- input and 3-input were used together with varying the parameters of the models. The study concluded that for 2-input, MIMO Radial basis function neural (RBFN) network performed better than the 2-input MIMO Multilayer perceptron (MLP) neural network in predicting the traffic data. In the case of 3-input, MLP network was found to be more efficient than RBFN network. In the scenario of SISO architecture, the MLP network outperformed the RBFN network for 4G daily, weekly and monthly traffic data.","PeriodicalId":413965,"journal":{"name":"2019 International Conference on Computing, Computational Modelling and Applications (ICCMA)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computing, Computational Modelling and Applications (ICCMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMA.2019.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The study compared the forecasting performance of two multiple-input and multiple-output (MIMO) and two single-input and single-output (SISO) neural networks using 4G network traffic data aggregated into daily, weekly and monthly time spans. To explore the best configuration of SISO and MIMO neural networks, the empirical traffic data of 1-input, 2- input and 3-input were used together with varying the parameters of the models. The study concluded that for 2-input, MIMO Radial basis function neural (RBFN) network performed better than the 2-input MIMO Multilayer perceptron (MLP) neural network in predicting the traffic data. In the case of 3-input, MLP network was found to be more efficient than RBFN network. In the scenario of SISO architecture, the MLP network outperformed the RBFN network for 4G daily, weekly and monthly traffic data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于电信通信量数据的MIMO和SISO神经网络预测能力比较研究
该研究比较了两种多输入多输出(MIMO)和两种单输入单输出(SISO)神经网络的预测性能,使用4G网络流量数据聚合成每天、每周和每月的时间跨度。为了探索SISO和MIMO神经网络的最佳配置,利用1输入、2输入和3输入的经验流量数据,并改变模型的参数。研究表明,对于2输入,MIMO径向基函数神经网络(RBFN)在预测交通数据方面优于2输入MIMO多层感知器(MLP)神经网络。在3输入情况下,MLP网络比RBFN网络效率更高。在SISO架构场景下,MLP网络在4G日、周、月流量数据上均优于RBFN网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact Analysis of Induced FM Radio Interferences on Aeronautical Radio Navigation Systems: Case Study of Kotoka International Airport, Accra-Ghana Modelling an Efficient Gap Filler for DTT Network Using ADS Software A Cryptographic Algorithm Based On Aes Cipher Andnondeterministic Algorithm Approach For Key Generation Evaluation of Inter-Cell Interference and BER on a Downlink PDSCH of the LTE Network Title Page i
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1