Deep-learning algorithms for imperfection-resilient Fourier-transform spectroscopy in silicon

Zindine Mokeddem, D. Melati, D. González-Andrade, Thi Thuy Duong Dinh, M. Montesinos-Ballester, E. Cassan, D. Marris-Morini, Y. Grinberg, P. Cheben, Danxia Xu, J. Schmid, L. Vivien, A. V. Velasco, C. Alonso‐Ramos
{"title":"Deep-learning algorithms for imperfection-resilient Fourier-transform spectroscopy in silicon","authors":"Zindine Mokeddem, D. Melati, D. González-Andrade, Thi Thuy Duong Dinh, M. Montesinos-Ballester, E. Cassan, D. Marris-Morini, Y. Grinberg, P. Cheben, Danxia Xu, J. Schmid, L. Vivien, A. V. Velasco, C. Alonso‐Ramos","doi":"10.1109/GFP51802.2021.9673932","DOIUrl":null,"url":null,"abstract":"Silicon photonics spectrometers have great potential for applications in medicine and hazard detection. However, silicon spectrometers are very sensitive to fabrication imperfections and environmental conditions. Here, we study the use of deep-learning algorithms to improve tolerance of Fourier-transform spectrometers against fabrication imperfections and temperature variations.","PeriodicalId":158770,"journal":{"name":"2021 IEEE 17th International Conference on Group IV Photonics (GFP)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 17th International Conference on Group IV Photonics (GFP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GFP51802.2021.9673932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon photonics spectrometers have great potential for applications in medicine and hazard detection. However, silicon spectrometers are very sensitive to fabrication imperfections and environmental conditions. Here, we study the use of deep-learning algorithms to improve tolerance of Fourier-transform spectrometers against fabrication imperfections and temperature variations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硅中不完美弹性傅里叶变换光谱的深度学习算法
硅光子学光谱仪在医学和危害检测方面具有巨大的应用潜力。然而,硅光谱仪对制造缺陷和环境条件非常敏感。在这里,我们研究了使用深度学习算法来提高傅里叶变换光谱仪对制造缺陷和温度变化的容忍度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental demonstration of reservoir computing with a silicon resonator and time multiplexing Broadband and Compact Polarization Splitter-Rotator Based on Subwavelength-Grating-Slot-Assisted Adiabatic Coupler for the Silicon-on-Insulator Platform Thermo-mechanical Noise Measurement of Sealed Nanobeams on a Silicon Photonics-MEMS Platform Optimization of Tapers and Interlayer Transitions via Adiabatic Loss Limiting 60-GHz-bandwidth O-band Membrane InGaAlAs Electro-Absorption Modulator on Si Platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1