Extended abstract: Anti-DDoS technique using self-learning bloom filter

C. Y. Tseung, Kam-pui Chow, X. Zhang
{"title":"Extended abstract: Anti-DDoS technique using self-learning bloom filter","authors":"C. Y. Tseung, Kam-pui Chow, X. Zhang","doi":"10.1109/ISI.2017.8004917","DOIUrl":null,"url":null,"abstract":"DDoS attack is still one of the major threats from Internet. We propose a new technique to mitigate different types of DDoS, combining and taking advantages of both machine learning algorithms and Bloom filter. We use machine learning to extract features of attacks, then use a customized Bloom filter to defend attacks based on selected features. We implemented and tested the performance of the proposed technique in a lab environment.","PeriodicalId":423696,"journal":{"name":"2017 IEEE International Conference on Intelligence and Security Informatics (ISI)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Intelligence and Security Informatics (ISI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2017.8004917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

DDoS attack is still one of the major threats from Internet. We propose a new technique to mitigate different types of DDoS, combining and taking advantages of both machine learning algorithms and Bloom filter. We use machine learning to extract features of attacks, then use a customized Bloom filter to defend attacks based on selected features. We implemented and tested the performance of the proposed technique in a lab environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扩展摘要:基于自学习布隆滤波器的ddos防御技术
DDoS攻击仍然是来自互联网的主要威胁之一。我们提出了一种新的技术来缓解不同类型的DDoS,结合并利用机器学习算法和布隆过滤器的优势。我们使用机器学习来提取攻击的特征,然后根据选择的特征使用自定义的Bloom过滤器来防御攻击。我们在实验室环境中实现并测试了所提出技术的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The dynamics of health sentiments with competitive interactions in social media Phishing detection: A recent intelligent machine learning comparison based on models content and features A framework for digital forensics analysis based on semantic role labeling Alignment-free indexing-first-one hashing with bloom filter integration Assessing medical device vulnerabilities on the Internet of Things
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1