Multimodality and the linkage-learning difficulty of additively separable functions

J. P. Martins, A. Delbem
{"title":"Multimodality and the linkage-learning difficulty of additively separable functions","authors":"J. P. Martins, A. Delbem","doi":"10.1145/2576768.2598281","DOIUrl":null,"url":null,"abstract":"Estimation of Distribution Algorithms (EDAs) have emerged from the synergy between machine-learning techniques and Genetic Algorithms (GAs). EDAs rely on probabilistic modeling for obtaining information about the underlying structure of optimization problems and implementing effective reproduction operators. The effectiveness of EDAs depends on the capacity of the model-building to extract reliable information about the problem. In this study we analyze additively separable functions and argue that the degree of multimodality of such functions defines their linkage-learning difficulty. Besides, by using entropy-based concepts and Jensen's inequality, we show how allelic pairwise independence may appear as a consequence of an increasing multimodality. The results characterize the linkage-learning difficulty of well-known functions, like the deceptive trap, bipolar and concatenated parity.","PeriodicalId":123241,"journal":{"name":"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2576768.2598281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Estimation of Distribution Algorithms (EDAs) have emerged from the synergy between machine-learning techniques and Genetic Algorithms (GAs). EDAs rely on probabilistic modeling for obtaining information about the underlying structure of optimization problems and implementing effective reproduction operators. The effectiveness of EDAs depends on the capacity of the model-building to extract reliable information about the problem. In this study we analyze additively separable functions and argue that the degree of multimodality of such functions defines their linkage-learning difficulty. Besides, by using entropy-based concepts and Jensen's inequality, we show how allelic pairwise independence may appear as a consequence of an increasing multimodality. The results characterize the linkage-learning difficulty of well-known functions, like the deceptive trap, bipolar and concatenated parity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加性可分离函数的多模态与链接学习困难
分布估计算法(EDAs)是从机器学习技术和遗传算法(GAs)之间的协同作用中产生的。eda依赖于概率建模来获取优化问题的底层结构信息并实现有效的复制算子。eda的有效性取决于模型构建提取有关问题的可靠信息的能力。本文分析了加性可分离函数,并认为这些函数的多模态程度决定了它们的连接学习难度。此外,通过使用基于熵的概念和Jensen不等式,我们展示了等位基因成对独立如何作为增加多模态的结果而出现。结果表征了众所周知的函数的链接学习困难,如欺骗性陷阱,双极和连接奇偶校验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Three-cornered coevolution learning classifier systems for classification tasks Runtime analysis to compare best-improvement and first-improvement in memetic algorithms Clonal selection based fuzzy C-means algorithm for clustering SPSO 2011: analysis of stability; local convergence; and rotation sensitivity GPU-accelerated evolutionary design of the complete exchange communication on wormhole networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1