Development of a Method for User Segmentation using Clustering Algorithms and Advanced Analytics

Daniil Andreevic Klinov, K. Grigorian
{"title":"Development of a Method for User Segmentation using Clustering Algorithms and Advanced Analytics","authors":"Daniil Andreevic Klinov, K. Grigorian","doi":"10.26907/1562-5419-2022-25-2-137-147","DOIUrl":null,"url":null,"abstract":"The article is devoted to the creation of an effective solution for user segmentation. The article presents an analysis of existing user segmentation services, an analysis of approaches to user segmentation (ABCDx segmentation, demographic segmentation, segmentation based on a user journey map), an analysis of clustering algorithms (K-means, Mini-Batch K-means, DBSCAN, Agglomerative Clustering, Spectral Clustering). The study of these areas is aimed at creating a “flexible” segmentation solution that adapts to each user sample. Dispersion analysis (ANOVA test), analysis of clustering metrics is also used to assess the quality of user segmentation. With the help of these areas, an effective solution for user segmentation has been developed using advanced analytics and machine learning technology.","PeriodicalId":262909,"journal":{"name":"Russian Digital Libraries Journal","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Digital Libraries Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26907/1562-5419-2022-25-2-137-147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The article is devoted to the creation of an effective solution for user segmentation. The article presents an analysis of existing user segmentation services, an analysis of approaches to user segmentation (ABCDx segmentation, demographic segmentation, segmentation based on a user journey map), an analysis of clustering algorithms (K-means, Mini-Batch K-means, DBSCAN, Agglomerative Clustering, Spectral Clustering). The study of these areas is aimed at creating a “flexible” segmentation solution that adapts to each user sample. Dispersion analysis (ANOVA test), analysis of clustering metrics is also used to assess the quality of user segmentation. With the help of these areas, an effective solution for user segmentation has been developed using advanced analytics and machine learning technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种使用聚类算法和高级分析的用户分割方法的发展
本文致力于为用户细分创建一个有效的解决方案。本文分析了现有的用户分割服务,分析了用户分割的方法(ABCDx分割,人口统计分割,基于用户旅程地图的分割),分析了聚类算法(K-means, Mini-Batch K-means, DBSCAN, Agglomerative clustering, Spectral clustering)。对这些领域的研究旨在创建一个“灵活”的细分解决方案,以适应每个用户样本。分散分析(ANOVA检验)、聚类指标分析也被用来评估用户分割的质量。在这些领域的帮助下,使用先进的分析和机器学习技术开发了有效的用户细分解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How the Latest Release Date of Publication is Formed in Bibliographic Reference "On the Fly" Stages of the Difficult Way (On the Computerization of Economic Research) Digital Platform for Supercomputer Mathematical Modeling of Spraying Processes Organization of Calculations and Work with Memory in the Educational Programming Language SYNHRO Semantic Annotation of Mathematical Formulas in PDF-Documents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1