Human motion tracking based on complementary Kalman filter

Zhi-Bo Wang, Lin Yang, Zhipei Huang, Jiankang Wu, Zhiqiang Zhang, Lixin Sun
{"title":"Human motion tracking based on complementary Kalman filter","authors":"Zhi-Bo Wang, Lin Yang, Zhipei Huang, Jiankang Wu, Zhiqiang Zhang, Lixin Sun","doi":"10.1109/BSN.2017.7936006","DOIUrl":null,"url":null,"abstract":"Miniaturized Inertial Measurement Unit (IMU) has been widely used in many motion capturing applications. In order to overcome stability and noise problems of IMU, a lot of efforts have been made to develop appropriate data fusion method to obtain reliable orientation estimation from IMU data. This article presents a method which models the errors of orientation, gyroscope bias and magnetic disturbance, and compensate the errors of state variables with complementary Kalman filter in a body motion capture system. Experimental results have shown that the proposed method significantly reduces the accumulative orientation estimation errors.","PeriodicalId":249670,"journal":{"name":"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"328 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2017.7936006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Miniaturized Inertial Measurement Unit (IMU) has been widely used in many motion capturing applications. In order to overcome stability and noise problems of IMU, a lot of efforts have been made to develop appropriate data fusion method to obtain reliable orientation estimation from IMU data. This article presents a method which models the errors of orientation, gyroscope bias and magnetic disturbance, and compensate the errors of state variables with complementary Kalman filter in a body motion capture system. Experimental results have shown that the proposed method significantly reduces the accumulative orientation estimation errors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于互补卡尔曼滤波的人体运动跟踪
小型化惯性测量单元(IMU)在许多运动捕捉应用中得到了广泛应用。为了克服IMU的稳定性和噪声问题,开发了合适的数据融合方法,从IMU数据中获得可靠的方向估计。提出了一种在人体运动捕捉系统中对姿态误差、陀螺仪偏置误差和磁扰动进行建模,并用互补卡尔曼滤波对状态变量误差进行补偿的方法。实验结果表明,该方法显著降低了累计方向估计误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Radiowave propagation characteristics of the intra-body channel at 2.38 GHz Smart-shoe self-powered by walking A personalized air quality sensing system - a preliminary study on assessing the air quality of London underground stations Unsupervised deep representation learning to remove motion artifacts in free-mode body sensor networks Quantifying postural instability in Parkinsonian gait from inertial sensor data during standardised clinical gait tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1