Detection of anomalies on satellite channels using signal processing and neural network

Y.A. Barsoum, D.H.L. Yin, T. Lee
{"title":"Detection of anomalies on satellite channels using signal processing and neural network","authors":"Y.A. Barsoum, D.H.L. Yin, T. Lee","doi":"10.1109/MILCOM.1993.408535","DOIUrl":null,"url":null,"abstract":"Intentional and nonintentional interference causes performance degradation to satellite communication links. The authors examine the detection and identification of interference through the use of digital signal processing and the neural network. They determine the sensitivity of the communication waveform to the anomalies, develop a simulation to evaluate the detection and identification performance of the digital signal processing, and develop a neural network to automate the detection process. The authors describe the simulation model, present the results of the sensitivity analysis, and present the detection performance of the digital processing and neural network. Results indicate that the averaged periodogram is capable of identifying tone jammers and adjacent channel interference (ACI) that degrade the bit error rate (BER) performance; and although the detection performance of the neural network developed is promising, it is not at a stage to detect interference with high accuracy.<<ETX>>","PeriodicalId":323612,"journal":{"name":"Proceedings of MILCOM '93 - IEEE Military Communications Conference","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of MILCOM '93 - IEEE Military Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM.1993.408535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Intentional and nonintentional interference causes performance degradation to satellite communication links. The authors examine the detection and identification of interference through the use of digital signal processing and the neural network. They determine the sensitivity of the communication waveform to the anomalies, develop a simulation to evaluate the detection and identification performance of the digital signal processing, and develop a neural network to automate the detection process. The authors describe the simulation model, present the results of the sensitivity analysis, and present the detection performance of the digital processing and neural network. Results indicate that the averaged periodogram is capable of identifying tone jammers and adjacent channel interference (ACI) that degrade the bit error rate (BER) performance; and although the detection performance of the neural network developed is promising, it is not at a stage to detect interference with high accuracy.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于信号处理和神经网络的卫星信道异常检测
有意和无意的干扰会导致卫星通信链路的性能下降。作者通过使用数字信号处理和神经网络来研究干扰的检测和识别。他们确定了通信波形对异常的灵敏度,开发了一个仿真来评估数字信号处理的检测和识别性能,并开发了一个神经网络来自动化检测过程。描述了仿真模型,给出了灵敏度分析结果,并介绍了数字处理和神经网络的检测性能。结果表明,该平均周期图能够识别干扰信号和降低误码率的相邻信道干扰(ACI);尽管所开发的神经网络的检测性能很有前景,但它还没有达到高精度检测干扰的阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The PoST portable satellite communication system Real-time and compressed video techniques for multi-media tactical FDDI networks Simulation systems: Training the U.S. Army, an economic solution for training in response to DoD budget reductions Mixed channel resource allocation analysis Integrating message, voice, and tracking data on UHF DAMA networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1