The marginalized particle filter for automotive tracking applications

A. Eidehall, Thomas Bo Schön, F. Gustafsson
{"title":"The marginalized particle filter for automotive tracking applications","authors":"A. Eidehall, Thomas Bo Schön, F. Gustafsson","doi":"10.1109/IVS.2005.1505131","DOIUrl":null,"url":null,"abstract":"This paper deals with the problem of estimating the vehicle surroundings (lane geometry and the position of other vehicles), which is needed for intelligent automotive systems, such as adaptive cruise control, collision avoidance and lane guidance. This results in a nonlinear estimation problem. For automotive tracking systems, these problems are traditionally handled using the extended Kalman filter. In this paper we describe the application of the marginalized particle filter to this problem. Studies using both synthetic and authentic data show that the marginalized particle filter can in fact give better performance than the extended Kalman filter. However, the computational load is higher.","PeriodicalId":386189,"journal":{"name":"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2005.1505131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

This paper deals with the problem of estimating the vehicle surroundings (lane geometry and the position of other vehicles), which is needed for intelligent automotive systems, such as adaptive cruise control, collision avoidance and lane guidance. This results in a nonlinear estimation problem. For automotive tracking systems, these problems are traditionally handled using the extended Kalman filter. In this paper we describe the application of the marginalized particle filter to this problem. Studies using both synthetic and authentic data show that the marginalized particle filter can in fact give better performance than the extended Kalman filter. However, the computational load is higher.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于汽车跟踪应用的边缘粒子滤波器
本文研究了自适应巡航控制、碰撞避免和车道引导等智能汽车系统所需的车辆周围环境(车道几何形状和其他车辆位置)的估计问题。这导致了一个非线性估计问题。对于汽车跟踪系统,传统上使用扩展卡尔曼滤波器来处理这些问题。本文描述了边缘粒子滤波在这一问题中的应用。利用合成数据和真实数据进行的研究表明,边缘粒子滤波实际上比扩展卡尔曼滤波具有更好的性能。但是,计算负荷较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A statistical based UWB multipath channel model for the indoor environments WPAN applications Visual-based assistance for electric vehicle driving Cooperative driving and lane changing at blind crossings Vehicle localization on a digital map using particles filtering Past, current and future on nonlinear dynamics and noise origins of non-smooth gear transmission dynamic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1