A Two-way SRAM Array based Accelerator for Deep Neural Network On-chip Training

Hongwu Jiang, Shanshi Huang, Xiaochen Peng, Jian-Wei Su, Yen-Chi Chou, Wei-Hsing Huang, Ta-Wei Liu, Ruhui Liu, Meng-Fan Chang, Shimeng Yu
{"title":"A Two-way SRAM Array based Accelerator for Deep Neural Network On-chip Training","authors":"Hongwu Jiang, Shanshi Huang, Xiaochen Peng, Jian-Wei Su, Yen-Chi Chou, Wei-Hsing Huang, Ta-Wei Liu, Ruhui Liu, Meng-Fan Chang, Shimeng Yu","doi":"10.1109/DAC18072.2020.9218524","DOIUrl":null,"url":null,"abstract":"On-chip training of large-scale deep neural networks (DNNs) is challenging due to computational complexity and resource limitation. Compute-in-memory (CIM) architecture exploits the analog computation inside the memory array to speed up the vectormatrix multiplication (VMM) and alleviate the memory bottleneck. However, existing CIM prototype chips, in particular, SRAM-based accelerators target at implementing low-precision inference engine only. In this work, we propose a two-way SRAM array design that could perform bi-directional in-memory VMM with minimum hardware overhead. A novel solution of signed number multiplication is also proposed to handle the negative input in backpropagation. We taped-out and validated proposed two-way SRAM array design in TSMC 28nm process. Based on the silicon measurement data on CIM macro, we explore the hardware performance for the entire architecture for DNN on-chip training. The experimental data shows that proposed accelerator can achieve energy efficiency of ~3.2 TOPS/W, >1000 FPS and >300 FPS for ResNet and DenseNet training on ImageNet, respectively.","PeriodicalId":428807,"journal":{"name":"2020 57th ACM/IEEE Design Automation Conference (DAC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 57th ACM/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAC18072.2020.9218524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

On-chip training of large-scale deep neural networks (DNNs) is challenging due to computational complexity and resource limitation. Compute-in-memory (CIM) architecture exploits the analog computation inside the memory array to speed up the vectormatrix multiplication (VMM) and alleviate the memory bottleneck. However, existing CIM prototype chips, in particular, SRAM-based accelerators target at implementing low-precision inference engine only. In this work, we propose a two-way SRAM array design that could perform bi-directional in-memory VMM with minimum hardware overhead. A novel solution of signed number multiplication is also proposed to handle the negative input in backpropagation. We taped-out and validated proposed two-way SRAM array design in TSMC 28nm process. Based on the silicon measurement data on CIM macro, we explore the hardware performance for the entire architecture for DNN on-chip training. The experimental data shows that proposed accelerator can achieve energy efficiency of ~3.2 TOPS/W, >1000 FPS and >300 FPS for ResNet and DenseNet training on ImageNet, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于双向SRAM阵列的深度神经网络片上训练加速器
由于计算复杂度和资源限制,大规模深度神经网络(dnn)的片上训练具有挑战性。内存计算(CIM)架构利用内存阵列内的模拟计算来加快向量矩阵乘法(VMM)运算速度,缓解内存瓶颈。然而,现有的CIM原型芯片,特别是基于sram的加速器,只针对实现低精度的推理引擎。在这项工作中,我们提出了一种双向SRAM阵列设计,可以在最小的硬件开销下执行双向内存VMM。针对反向传播中的负输入,提出了一种新的有符号数乘法解。我们在TSMC的28nm制程上完成并验证了所提出的双向SRAM阵列设计。基于CIM宏上的硅测量数据,我们探索了DNN片上训练的整个架构的硬件性能。实验数据表明,该加速器在ImageNet上进行ResNet和DenseNet训练的能量效率分别达到~3.2 TOPS/W、>1000 FPS和>300 FPS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FCNNLib: An Efficient and Flexible Convolution Algorithm Library on FPGAs AXI HyperConnect: A Predictable, Hypervisor-level Interconnect for Hardware Accelerators in FPGA SoC Pythia: Intellectual Property Verification in Zero-Knowledge Reuse-trap: Re-purposing Cache Reuse Distance to Defend against Side Channel Leakage Navigator: Dynamic Multi-kernel Scheduling to Improve GPU Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1