RBF network with two-stage supervised learning: an application

P. Blonda, A. Baraldi, A. D’Addabbo, C. Tarantino
{"title":"RBF network with two-stage supervised learning: an application","authors":"P. Blonda, A. Baraldi, A. D’Addabbo, C. Tarantino","doi":"10.1109/NAFIPS.2002.1018042","DOIUrl":null,"url":null,"abstract":"In the field of image classification, this paper compares a traditional RBF two-stage hybrid learning procedure with an RBF two-stage learning technique exploiting labeled data to adapt hidden unit parameters. RBF centers are determined by running a clustering algorithm separately on different training sets, where each set is associated with a different class. The ELBG neural network is used as clustering algorithm. Two different data sets have been considered. The first consists of real three Synthetic Aperture Radar (SAR) image tandem pairs from ERS1/ERS2 satellites. The second consists of Magnetic Resonance (MR) slices of a patient affected by multiple sclerosis. The results indicate that the supervised approach performs better than the traditional approach when the number of hidden unit is the same and seems more stable to changes in the number of hidden units.","PeriodicalId":348314,"journal":{"name":"2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2002.1018042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In the field of image classification, this paper compares a traditional RBF two-stage hybrid learning procedure with an RBF two-stage learning technique exploiting labeled data to adapt hidden unit parameters. RBF centers are determined by running a clustering algorithm separately on different training sets, where each set is associated with a different class. The ELBG neural network is used as clustering algorithm. Two different data sets have been considered. The first consists of real three Synthetic Aperture Radar (SAR) image tandem pairs from ERS1/ERS2 satellites. The second consists of Magnetic Resonance (MR) slices of a patient affected by multiple sclerosis. The results indicate that the supervised approach performs better than the traditional approach when the number of hidden unit is the same and seems more stable to changes in the number of hidden units.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
两阶段监督学习的RBF网络:一个应用
在图像分类领域,本文将传统的RBF两阶段混合学习方法与利用标记数据适应隐藏单元参数的RBF两阶段学习技术进行了比较。通过在不同的训练集上分别运行聚类算法来确定RBF中心,其中每个集与不同的类相关联。采用ELBG神经网络作为聚类算法。考虑了两种不同的数据集。第一个是由来自ERS1/ERS2卫星的合成孔径雷达(SAR)图像串联对组成的。第二种是多发性硬化症患者的磁共振切片。结果表明,当隐藏单元数量相同时,监督方法的性能优于传统方法,并且对隐藏单元数量的变化更加稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy linear clustering for fabric selection from online database Fuzzy clustering in vision recognition applied in NAVI Fuzzy functions to select an optimal action in decision theory Fuzzy systems and soft O.R Conceptual fuzzy sets-based navigation system for Yahoo!
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1