Dynamic observations and dynamic state termination for off-line handwritten word recognition using HMM

Y. Al-Ohali, M. Cheriet, C. Suen
{"title":"Dynamic observations and dynamic state termination for off-line handwritten word recognition using HMM","authors":"Y. Al-Ohali, M. Cheriet, C. Suen","doi":"10.1109/IWFHR.2002.1030929","DOIUrl":null,"url":null,"abstract":"HMM has been successfully used to model 1D data, e.g. voice signals. Their use to model 2D patterns was not as successful due to a major difficulty, in describing the 2D data using 1D observation sequences. In this paper, we discuss the importance of this issue and present an improved method to extract 1D observations from the dynamics of off-line handwritten words. The method is based on pen trajectory estimation techniques. The paper also includes description of our HMM classifier which allows dynamic termination states to achieve enhanced discriminative power. Experimental results show the applicability and usefulness of the proposed method. As a result of using the termination probability in HMM modeling, the top 1/sup st/ recognition rate increased by 10%.","PeriodicalId":114017,"journal":{"name":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWFHR.2002.1030929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

HMM has been successfully used to model 1D data, e.g. voice signals. Their use to model 2D patterns was not as successful due to a major difficulty, in describing the 2D data using 1D observation sequences. In this paper, we discuss the importance of this issue and present an improved method to extract 1D observations from the dynamics of off-line handwritten words. The method is based on pen trajectory estimation techniques. The paper also includes description of our HMM classifier which allows dynamic termination states to achieve enhanced discriminative power. Experimental results show the applicability and usefulness of the proposed method. As a result of using the termination probability in HMM modeling, the top 1/sup st/ recognition rate increased by 10%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于HMM的离线手写单词识别的动态观察和动态终止
HMM已经成功地用于建模一维数据,例如语音信号。由于在使用1D观测序列描述2D数据时存在一个主要困难,因此将它们用于2D模式建模并不成功。在本文中,我们讨论了这个问题的重要性,并提出了一种改进的方法来从离线手写单词的动态中提取一维观测值。该方法基于钢笔轨迹估计技术。本文还描述了我们的HMM分类器,该分类器允许动态终止状态以获得增强的判别能力。实验结果表明了该方法的适用性和有效性。由于在HMM建模中使用了终止概率,top 1/sup /识别率提高了10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bigram-based post-processing for online handwriting recognition using correctness evaluation The effect of large training set sizes on online Japanese Kanji and English cursive recognizers Analysis of stability in hand-written dynamic signatures Recognition of courtesy amounts on bank checks based on a segmentation approach Vind(x): using the user through cooperative annotation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1