{"title":"Autocorrelation for time series with linear trend","authors":"Firuz Kamalov, F. Thabtah, Ikhlaas Gurrib","doi":"10.1109/3ICT53449.2021.9581809","DOIUrl":null,"url":null,"abstract":"The autocorrelation function (ACF) is a fundamental concept in time series analysis including financial forecasting. In this note, we investigate the properties of the sample ACF for a time series with linear trend. In particular, we show that the sample ACF of the time series approaches 1 for all lags as the number of time steps increases. The theoretical results are supported by numerical experiments. Our result helps researchers better understand the ACF patterns and make correct ARMA selection.","PeriodicalId":133021,"journal":{"name":"2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3ICT53449.2021.9581809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The autocorrelation function (ACF) is a fundamental concept in time series analysis including financial forecasting. In this note, we investigate the properties of the sample ACF for a time series with linear trend. In particular, we show that the sample ACF of the time series approaches 1 for all lags as the number of time steps increases. The theoretical results are supported by numerical experiments. Our result helps researchers better understand the ACF patterns and make correct ARMA selection.