Automatic Brain MRI Slices Classification Using Hybrid Technique

A. F. Mahmood, Ameen Mohammed Abd-Alsalam
{"title":"Automatic Brain MRI Slices Classification Using Hybrid Technique","authors":"A. F. Mahmood, Ameen Mohammed Abd-Alsalam","doi":"10.33899/RENGJ.2014.88213","DOIUrl":null,"url":null,"abstract":"This paper presents an intelligent classification technique to identify normal and abnormal slices of the magnetic resonance human brain images(MRI). The prtoposed hybrid technique consists of four subsequent stages; namely, dimensionality reduction, preprocessing, feature extraction, and classification. In the initial stages, the enhancement and removed unwanted informationare applied to provide a more appropriate image for the subsequent automated stages. In feature extraction stage, the most efficient features like statistical, and Haar wavelet features are extracted from each slice of brain MR images. In the classification stage, initially performs classification process by utilizing Fuzzy Inference System (FIS) and secondly Feed Forward  Neural Network (FFNN) is used to classify the braintissue to normal or abnormal. The proposed automated system is tested on a data set of 572 MRI images using T1 horizontal transverse (axial) section of the brain. Hybrid method yields high sensitivity of 100%, specificity of 100% and overallaccuracy of 95.66% over FIS and FFNN. The classification result shows that the proposed hybrid techniques are robust and effective compared with other recently work. Keywords: Brain Tumor Classification; Fuzzy Inference System; Feed Forward  Neural Network; MRI .","PeriodicalId":339890,"journal":{"name":"AL Rafdain Engineering Journal","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AL Rafdain Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33899/RENGJ.2014.88213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper presents an intelligent classification technique to identify normal and abnormal slices of the magnetic resonance human brain images(MRI). The prtoposed hybrid technique consists of four subsequent stages; namely, dimensionality reduction, preprocessing, feature extraction, and classification. In the initial stages, the enhancement and removed unwanted informationare applied to provide a more appropriate image for the subsequent automated stages. In feature extraction stage, the most efficient features like statistical, and Haar wavelet features are extracted from each slice of brain MR images. In the classification stage, initially performs classification process by utilizing Fuzzy Inference System (FIS) and secondly Feed Forward  Neural Network (FFNN) is used to classify the braintissue to normal or abnormal. The proposed automated system is tested on a data set of 572 MRI images using T1 horizontal transverse (axial) section of the brain. Hybrid method yields high sensitivity of 100%, specificity of 100% and overallaccuracy of 95.66% over FIS and FFNN. The classification result shows that the proposed hybrid techniques are robust and effective compared with other recently work. Keywords: Brain Tumor Classification; Fuzzy Inference System; Feed Forward  Neural Network; MRI .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混合技术的脑MRI切片自动分类
提出了一种用于人脑核磁共振图像正常与异常切片识别的智能分类技术。所提出的混合技术包括四个后续阶段;即降维、预处理、特征提取和分类。在初始阶段,应用增强和去除不需要的信息,为随后的自动化阶段提供更合适的图像。在特征提取阶段,从每一幅脑磁共振图像中提取最有效的统计特征、哈尔小波特征等特征。在分类阶段,首先利用模糊推理系统(FIS)进行分类处理,然后利用前馈神经网络(FFNN)对脑组织进行正常和异常分类。所提出的自动化系统在572张MRI图像的数据集上进行了测试,这些图像使用大脑的T1水平横向(轴向)切片。与FIS和FFNN相比,混合方法的灵敏度为100%,特异性为100%,总体准确率为95.66%。分类结果表明,该方法具有较好的鲁棒性和有效性。关键词:脑肿瘤分类;模糊推理系统;前馈神经网络;核磁共振成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Situation Of Water Treatment Plant In Mosul City Manufacturing of Erosion Measuring Rig for Polymers and Their Composites with some Experimental Results Numerical Analysis of Effect of Nano-particles on Fluid Flow and Heat Transfer by Forced Convection in Channel with different traingle configuration Evaluating the Performance of the A2O System for Removing Nutrients from Municipality Wastewater Real-Time Voice Transmission over Wireless Sensor Network (VoWSN) based Automatic Speech Recognition (ASR) Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1