Neuro-fuzzy control of a steam boiler-turbine unit

F. Alturki, A. Abdennour
{"title":"Neuro-fuzzy control of a steam boiler-turbine unit","authors":"F. Alturki, A. Abdennour","doi":"10.1109/CCA.1999.801041","DOIUrl":null,"url":null,"abstract":"Conceptually, fuzzy logic possesses the quality of simplicity. However, its early applications relied on trial and error in selecting either the fuzzy membership functions or the fuzzy rules. This made it depend rather too heavily on expert knowledge which may not always be available. Hence, a self-tuning or an adaptive fuzzy logic controller (FLC) such as Adaptive Neuro-Fuzzy Inference System (ANFIS) removes this stringent requirement. This paper demonstrates the application of ANFIS to a 160 Mw nonlinear multi-input multi-output (MIMO) steam boiler-turbine unit. The space of operating conditions of the plant is partitioned into five regions. For each of the regions an optimal controller is designed. The resulting five linear controllers are used to train ANFIS. Simulation results showed that the fuzzy controller closely reproduced the optimal performance in each of the design points and surpassed any single linear controller in these operating regions. These results also reveal the robustness of the FLC to parameter variations.","PeriodicalId":325193,"journal":{"name":"Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.1999.801041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

Conceptually, fuzzy logic possesses the quality of simplicity. However, its early applications relied on trial and error in selecting either the fuzzy membership functions or the fuzzy rules. This made it depend rather too heavily on expert knowledge which may not always be available. Hence, a self-tuning or an adaptive fuzzy logic controller (FLC) such as Adaptive Neuro-Fuzzy Inference System (ANFIS) removes this stringent requirement. This paper demonstrates the application of ANFIS to a 160 Mw nonlinear multi-input multi-output (MIMO) steam boiler-turbine unit. The space of operating conditions of the plant is partitioned into five regions. For each of the regions an optimal controller is designed. The resulting five linear controllers are used to train ANFIS. Simulation results showed that the fuzzy controller closely reproduced the optimal performance in each of the design points and surpassed any single linear controller in these operating regions. These results also reveal the robustness of the FLC to parameter variations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蒸汽锅炉汽轮机组的神经模糊控制
从概念上讲,模糊逻辑具有简单性。然而,它的早期应用依赖于在选择模糊隶属函数或模糊规则时的反复试验。这使得它过于依赖可能并不总是可用的专家知识。因此,自调谐或自适应模糊逻辑控制器(FLC),如自适应神经模糊推理系统(ANFIS)消除了这种严格的要求。本文介绍了ANFIS在160mw非线性多输入多输出(MIMO)蒸汽锅炉汽轮机组中的应用。工厂的操作条件空间被划分为五个区域。针对每个区域设计了最优控制器。得到的5个线性控制器用于训练ANFIS。仿真结果表明,该模糊控制器能较好地再现各设计点的最优性能,并优于任何单一的线性控制器。这些结果也揭示了FLC对参数变化的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Friction compensation strategy via smooth adaptive dynamic surface control Gain-scheduled control of a system with input constraint by suppression of input derivatives An approach to robust hierarchical impedance control in redundant manipulator New simple adaptive control subject to disturbances and application to torsional vibration suppression Distributed Web caching using hash-based query caching method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1