Single objective real-parameter optimization: Algorithm jSO

J. Brest, M. Maučec, B. Bošković
{"title":"Single objective real-parameter optimization: Algorithm jSO","authors":"J. Brest, M. Maučec, B. Bošković","doi":"10.1109/CEC.2017.7969456","DOIUrl":null,"url":null,"abstract":"Solving single objective real-parameter optimization problems, also known as a bound-constrained optimization, is still a challenging task. We can find such problems in engineering optimization, scientific applications, and in other real-world problems. Usually, these problems are very complex and computationally expensive. A new algorithm, called jSO, is presented in this paper. The algorithm is an improved variant of the iL-SHADE algorithm, mainly with a new weighted version of mutation strategy. The experiments were performed on CEC 2017 benchmark functions, which are different from previous competition benchmark functions. A comparison of the proposed jSO algorithm and the L-SHADE algorithm is presented first. From the obtained results we can conclude that jSO performs better in comparison with the L-SHADE algorithm. Next, a comparison of jSO and iL-SHADE is also performed, and jSO obtained better or competitive results. Using the CEC 2017 evaluation method, jSO obtained the best final score among these three algorithms.","PeriodicalId":335123,"journal":{"name":"2017 IEEE Congress on Evolutionary Computation (CEC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"286","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2017.7969456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 286

Abstract

Solving single objective real-parameter optimization problems, also known as a bound-constrained optimization, is still a challenging task. We can find such problems in engineering optimization, scientific applications, and in other real-world problems. Usually, these problems are very complex and computationally expensive. A new algorithm, called jSO, is presented in this paper. The algorithm is an improved variant of the iL-SHADE algorithm, mainly with a new weighted version of mutation strategy. The experiments were performed on CEC 2017 benchmark functions, which are different from previous competition benchmark functions. A comparison of the proposed jSO algorithm and the L-SHADE algorithm is presented first. From the obtained results we can conclude that jSO performs better in comparison with the L-SHADE algorithm. Next, a comparison of jSO and iL-SHADE is also performed, and jSO obtained better or competitive results. Using the CEC 2017 evaluation method, jSO obtained the best final score among these three algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单目标实参数优化:jSO算法
求解单目标实参数优化问题,也称为边界约束优化,仍然是一项具有挑战性的任务。我们可以在工程优化、科学应用和其他现实问题中找到这样的问题。通常,这些问题非常复杂,计算成本很高。本文提出了一种新的jSO算法。该算法是对iL-SHADE算法的改进,主要采用了一种新的加权变异策略。实验在CEC 2017基准函数上进行,不同于以往的竞争基准函数。首先对jSO算法和L-SHADE算法进行了比较。从得到的结果我们可以得出结论,与L-SHADE算法相比,jSO的性能更好。接下来,对jSO和iL-SHADE进行了比较,jSO获得了更好或更具竞争力的结果。使用CEC 2017评价方法,jSO在这三种算法中获得了最好的最终分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Knowledge-based particle swarm optimization for PID controller tuning Local Optima Networks of the Permutation Flowshop Scheduling Problem: Makespan vs. total flow time Information core optimization using Evolutionary Algorithm with Elite Population in recommender systems New heuristics for multi-objective worst-case optimization in evidence-based robust design Bus Routing for emergency evacuations: The case of the Great Fire of Valparaiso
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1