IMU/GPS based pedestrian localization

Ling Chen, Huosheng Hu
{"title":"IMU/GPS based pedestrian localization","authors":"Ling Chen, Huosheng Hu","doi":"10.1109/CEEC.2012.6375373","DOIUrl":null,"url":null,"abstract":"The low cost Inertial Measurement Unit(IMU) can be used to provide accurate position information of a pedestrian when it is combined with Global Positioning System(GPS). This paper investigates how the integration of IMU anf GPS can be effectively used in pedestrian localization. The position calculation is achieved in sequence by three different strategies, namely basic double integration of IMU data, Zero-velocity Update (ZUPT) and Extended Kalman Filter(EKF) based fusion of IMU and GPS data. Experiments that are conducted in two fields show that EKF based localization outperform the double integration and ZUPT methods in terms of both positioning accuracy and robustness.","PeriodicalId":142286,"journal":{"name":"2012 4th Computer Science and Electronic Engineering Conference (CEEC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 4th Computer Science and Electronic Engineering Conference (CEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEEC.2012.6375373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

The low cost Inertial Measurement Unit(IMU) can be used to provide accurate position information of a pedestrian when it is combined with Global Positioning System(GPS). This paper investigates how the integration of IMU anf GPS can be effectively used in pedestrian localization. The position calculation is achieved in sequence by three different strategies, namely basic double integration of IMU data, Zero-velocity Update (ZUPT) and Extended Kalman Filter(EKF) based fusion of IMU and GPS data. Experiments that are conducted in two fields show that EKF based localization outperform the double integration and ZUPT methods in terms of both positioning accuracy and robustness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于IMU/GPS的行人定位
低成本的惯性测量单元(IMU)与全球定位系统(GPS)相结合,可以提供准确的行人位置信息。本文研究了IMU和GPS的结合如何有效地应用于行人定位。通过IMU数据的基本双积分、零速度更新(ZUPT)和基于扩展卡尔曼滤波(EKF)的IMU与GPS数据融合三种不同的策略,顺序实现定位计算。在两个领域进行的实验表明,基于EKF的定位在定位精度和鲁棒性方面都优于双积分和ZUPT方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The importance of social tie detection in socially-aware opportunistic routing On the control of generic abelian group codes Performance analysis of hybrid network for cloud datacenter Applying Gaussian mixture model on Discrete Cosine features for image segmentation and classification Energy efficient transmission power estimation for WLAN VoIP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1