Tight Space Bounds for Two-Dimensional Approximate Range Counting

Zhewei Wei, K. Yi
{"title":"Tight Space Bounds for Two-Dimensional Approximate Range Counting","authors":"Zhewei Wei, K. Yi","doi":"10.1145/3205454","DOIUrl":null,"url":null,"abstract":"We study the problem of two-dimensional orthogonal range counting with additive error. Given a set P of n points drawn from an n× n grid and an error parameter ε, the goal is to build a data structure, such that for any orthogonal range R, it can return the number of points in P ∩ R with additive error ε n. A well-known solution for this problem is obtained by using ε-approximation, which is a subset A⊆ P that can estimate the number of points in P ∩ R with the number of points in A ∩ R. It is known that an ε-approximation of size O(1/ε log 2.5 1/ε) exists for any P with respect to orthogonal ranges, and the best lower bound is Ω(1/ε log 1/ε). The ε-approximation is a rather restricted data structure, as we are not allowed to store any information other than the coordinates of the points. In this article, we explore what can be achieved without any restriction on the data structure. We first describe a simple data structure that uses O(1/ε(log 21/ε + log n)) bits and answers queries with error ε n. We then prove a lower bound that any data structure that answers queries with error ε n will have to use Ω(1/ε (log 21/ε + log n)) bits. Our lower bound is information-theoretic: We show that there is a collection of 2Ω(nlog n) point sets with large union combinatorial discrepancy and thus are hard to distinguish unless we use Ω(nlog n) bits.","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3205454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We study the problem of two-dimensional orthogonal range counting with additive error. Given a set P of n points drawn from an n× n grid and an error parameter ε, the goal is to build a data structure, such that for any orthogonal range R, it can return the number of points in P ∩ R with additive error ε n. A well-known solution for this problem is obtained by using ε-approximation, which is a subset A⊆ P that can estimate the number of points in P ∩ R with the number of points in A ∩ R. It is known that an ε-approximation of size O(1/ε log 2.5 1/ε) exists for any P with respect to orthogonal ranges, and the best lower bound is Ω(1/ε log 1/ε). The ε-approximation is a rather restricted data structure, as we are not allowed to store any information other than the coordinates of the points. In this article, we explore what can be achieved without any restriction on the data structure. We first describe a simple data structure that uses O(1/ε(log 21/ε + log n)) bits and answers queries with error ε n. We then prove a lower bound that any data structure that answers queries with error ε n will have to use Ω(1/ε (log 21/ε + log n)) bits. Our lower bound is information-theoretic: We show that there is a collection of 2Ω(nlog n) point sets with large union combinatorial discrepancy and thus are hard to distinguish unless we use Ω(nlog n) bits.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维近似距离计数的紧空间边界
研究了具有加性误差的二维正交距离计数问题。给定从nx n网格中绘制的n个点的集合P和一个误差参数ε,目标是建立一个数据结构,使得对于任何正交范围R,它都可以返回P∩R中具有可加性误差ε n的点的数量。这个问题的一个著名的解决方案是使用ε-近似。对于任意P,在正交范围内存在一个大小为0 (1/ε log 2.5 1/ε)的ε-近似,其最佳下界为Ω(1/ε log 1/ε)。ε-近似是一种相当有限的数据结构,因为我们不允许存储除点坐标以外的任何信息。在本文中,我们将探讨在不受数据结构限制的情况下可以实现的功能。我们首先描述了一个简单的数据结构,它使用O(1/ε(log 21/ε + log n))位来回答错误为ε n的查询。然后我们证明了一个下界,即任何回答错误为ε n的查询的数据结构都必须使用Ω(1/ε (log 21/ε + log n))位。我们的下界是信息论的:我们表明存在2Ω(nlog n)个点集的集合,它们具有大的联合组合差异,因此很难区分,除非我们使用Ω(nlog n)位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generic Techniques for Building Top-k Structures Deterministic Leader Election in Anonymous Radio Networks A Learned Approach to Design Compressed Rank/Select Data Structures k-apices of Minor-closed Graph Classes. II. Parameterized Algorithms Fully Dynamic (Δ +1)-Coloring in O(1) Update Time
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1