Construction Method of Domain Knowledge Graph Based on Big Data-driven

Ning Wang, E. Haihong, Meina Song, Y. Wang
{"title":"Construction Method of Domain Knowledge Graph Based on Big Data-driven","authors":"Ning Wang, E. Haihong, Meina Song, Y. Wang","doi":"10.1109/INFOMAN.2019.8714664","DOIUrl":null,"url":null,"abstract":"Most of the published research work mainly emphasizes one aspect of knowledge graph construction in isolation and neglects the big data processing flow in this process, which lacks of value in the practical construction of knowledge graph. Therefore, the paper proposes a construction method of domain knowledge graph based on big data-driven and build an artificial intelligence domain knowledge graph to prove the feasibility of this method, which covers artificial intelligence enterprises, patents, news, technology labels and other entities.","PeriodicalId":186072,"journal":{"name":"2019 5th International Conference on Information Management (ICIM)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th International Conference on Information Management (ICIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOMAN.2019.8714664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Most of the published research work mainly emphasizes one aspect of knowledge graph construction in isolation and neglects the big data processing flow in this process, which lacks of value in the practical construction of knowledge graph. Therefore, the paper proposes a construction method of domain knowledge graph based on big data-driven and build an artificial intelligence domain knowledge graph to prove the feasibility of this method, which covers artificial intelligence enterprises, patents, news, technology labels and other entities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于大数据驱动的领域知识图谱构建方法
大部分已发表的研究工作主要是孤立地强调知识图谱构建的一个方面,而忽略了这一过程中的大数据处理流程,对知识图谱的实际构建缺乏价值。因此,本文提出了一种基于大数据驱动的领域知识图谱构建方法,并构建了一个人工智能领域知识图谱来证明该方法的可行性,该图谱涵盖了人工智能企业、专利、新闻、技术标签等实体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Digital Commpetence Curriculum for Schools' Employees: Croatian e-Schools Project Example Designing of the Entrepreneurial Phase Cycle Simulation Model: Justification and Prospects Literature Review of WeChat Friends Circle Advertisement Analysis of Research on Online Rumors A Framework for Improving the Sharing of Teaching Practices Through Web 2.0 Technology for Academic Instructors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1