Increment adaptive correlation filter for visual tracking

Gangbiao Chen, Zhiwen Fang, Zhou Yue, Bo Liu, Yang Xiao, Yanan Li
{"title":"Increment adaptive correlation filter for visual tracking","authors":"Gangbiao Chen, Zhiwen Fang, Zhou Yue, Bo Liu, Yang Xiao, Yanan Li","doi":"10.1117/12.2541744","DOIUrl":null,"url":null,"abstract":"Currently, the correlation filter is widely used in visual tracking because of its effectiveness and efficiency. To adapt the representation to changing target appearances, a linear interpolation is used to update tracking models according to a manually designed learning rate. However, The limitation of manually tricks make methods only apply to some special scenes because the threshold parameters are sensitive to different response maps in complex scenes. In this paper, to overcome this problem, an adaptive increment correlation filter based tracker is proposed. Different from traditional linear interpolation depending on a manual learning rate, the increment is learned by linear regression based on the history tracking model and the current training samples. Experimentally, we show that our algorithm can outperform state-of-the-art key point-based trackers.","PeriodicalId":384253,"journal":{"name":"International Symposium on Multispectral Image Processing and Pattern Recognition","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Multispectral Image Processing and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2541744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, the correlation filter is widely used in visual tracking because of its effectiveness and efficiency. To adapt the representation to changing target appearances, a linear interpolation is used to update tracking models according to a manually designed learning rate. However, The limitation of manually tricks make methods only apply to some special scenes because the threshold parameters are sensitive to different response maps in complex scenes. In this paper, to overcome this problem, an adaptive increment correlation filter based tracker is proposed. Different from traditional linear interpolation depending on a manual learning rate, the increment is learned by linear regression based on the history tracking model and the current training samples. Experimentally, we show that our algorithm can outperform state-of-the-art key point-based trackers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于视觉跟踪的增量自适应相关滤波器
目前,相关滤波器因其有效性和高效性在视觉跟踪中得到了广泛的应用。为了适应不断变化的目标外观,根据人工设计的学习率,使用线性插值来更新跟踪模型。然而,由于阈值参数对复杂场景中不同的响应映射很敏感,人工技巧的局限性使得方法只适用于一些特殊的场景。为了克服这一问题,本文提出了一种基于自适应增量相关滤波器的跟踪器。与传统的依赖人工学习率的线性插值不同,增量是基于历史跟踪模型和当前训练样本的线性回归学习的。实验表明,我们的算法可以胜过最先进的基于关键点的跟踪器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image fusion for multimodality image via domain transfer and nonrigid transformation Dimensionality reduction of hyperspectral images based on subspace combination clustering and adaptive band selection Remote multi-object detection based on bounding box field Facial morphe via domain translation and FM2RLS Restoration of haze-free images using generative adversarial network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1