Data-Driven Safe Predictive Control Using Spatial Temporal Filter-based Function Approximators

Amin Vahidi-Moghaddam, Kaian Chen, Zhaojian Li, Yan Wang, Kai Wu
{"title":"Data-Driven Safe Predictive Control Using Spatial Temporal Filter-based Function Approximators","authors":"Amin Vahidi-Moghaddam, Kaian Chen, Zhaojian Li, Yan Wang, Kai Wu","doi":"10.23919/ACC53348.2022.9867573","DOIUrl":null,"url":null,"abstract":"Model predictive control (MPC) is a state-of-the-art control method that can explicitly tackle system constraints. However, its high computational cost still remains an open challenge for embedded systems. To achieve satisfactory performance with manageable computational complexity, a spatial temporal filter (STF)-based data-driven predictive control framework is developed to systematically identify system dynamics and subsequently learn the MPC policy using STF-based function approximations. Specifically, an online nonlinear system identification method that satisfies persistence of excitation (PE) is developed by using a discrete-time concurrent learning technique. An STF-based function approximation is then employed to learn the nonlinear MPC (NMPC) policy based on the identified model. Furthermore, a discrete-time robust control barrier function (RCBF) is introduced to guarantee system safety in the presence of additive disturbances and system identification errors. Finally, simulations on the cart inverted pendulum are performed to demonstrate the efficacy of the proposed control synthesis.","PeriodicalId":366299,"journal":{"name":"2022 American Control Conference (ACC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC53348.2022.9867573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Model predictive control (MPC) is a state-of-the-art control method that can explicitly tackle system constraints. However, its high computational cost still remains an open challenge for embedded systems. To achieve satisfactory performance with manageable computational complexity, a spatial temporal filter (STF)-based data-driven predictive control framework is developed to systematically identify system dynamics and subsequently learn the MPC policy using STF-based function approximations. Specifically, an online nonlinear system identification method that satisfies persistence of excitation (PE) is developed by using a discrete-time concurrent learning technique. An STF-based function approximation is then employed to learn the nonlinear MPC (NMPC) policy based on the identified model. Furthermore, a discrete-time robust control barrier function (RCBF) is introduced to guarantee system safety in the presence of additive disturbances and system identification errors. Finally, simulations on the cart inverted pendulum are performed to demonstrate the efficacy of the proposed control synthesis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时空滤波器的函数逼近器的数据驱动安全预测控制
模型预测控制(MPC)是一种能够明确处理系统约束的控制方法。然而,它的高计算成本仍然是嵌入式系统的一个公开挑战。为了获得令人满意的性能和可管理的计算复杂度,开发了基于时空滤波器(STF)的数据驱动预测控制框架,系统地识别系统动态,随后使用基于STF的函数逼近学习MPC策略。具体而言,利用离散时间并行学习技术,提出了一种满足激励持续性的在线非线性系统辨识方法。然后使用基于stf的函数逼近来学习基于识别模型的非线性MPC (NMPC)策略。此外,引入离散鲁棒控制屏障函数(RCBF)来保证系统在存在加性干扰和系统辨识误差时的安全性。最后,对小车倒立摆进行了仿真,验证了所提控制综合的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Connectivity during Multi-agent Consensus Dynamics via Model Predictive Control Gradient-Based Optimization for Anti-Windup PID Controls Power Management for Noise Aware Path Planning of Hybrid UAVs Fixed-Time Seeking and Tracking of Time-Varying Nash Equilibria in Noncooperative Games Aerial Interception of Non-Cooperative Intruder using Model Predictive Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1