Integrating Sarcastic Language Datasets in Various Standards for Sarcasm Detection

Shih-Hung Wu, Xie-Sheng Hong
{"title":"Integrating Sarcastic Language Datasets in Various Standards for Sarcasm Detection","authors":"Shih-Hung Wu, Xie-Sheng Hong","doi":"10.1109/IRI58017.2023.00022","DOIUrl":null,"url":null,"abstract":"Sarcastic language is a special kind of figurative language that involve misperception in the text. The ambiguity and specificity of sarcastic language affects the tasks related to natural language processing and sentiment analysis. These properties make sarcasm detection an important challenge. Different datasets give very different standard on sarcasm. In this paper, we study the “generalizability” of sarcastic datasets. We compare six sarcastic datasets annotated by different research teams. Based on the classification model trained by RoBERTa to investigate the generalizability among the datasets.","PeriodicalId":290818,"journal":{"name":"2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI58017.2023.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sarcastic language is a special kind of figurative language that involve misperception in the text. The ambiguity and specificity of sarcastic language affects the tasks related to natural language processing and sentiment analysis. These properties make sarcasm detection an important challenge. Different datasets give very different standard on sarcasm. In this paper, we study the “generalizability” of sarcastic datasets. We compare six sarcastic datasets annotated by different research teams. Based on the classification model trained by RoBERTa to investigate the generalizability among the datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
整合不同标准的讽刺语言数据集进行讽刺检测
讽刺语是一种特殊的比喻性语言,在语篇中存在误解。讽刺语的模糊性和特殊性影响了自然语言处理和情感分析的相关任务。这些特性使得讽刺检测成为一个重要的挑战。不同的数据集给出了非常不同的讽刺标准。本文研究了讽刺数据集的“可泛化性”。我们比较了由不同研究团队注释的六个讽刺数据集。基于RoBERTa训练的分类模型,研究数据集之间的泛化性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research Paper Classification and Recommendation System based-on Fine-Tuning BERT Using BERT to Understand TikTok Users’ ADHD Discussion Enhancing Noisy Binary Search Efficiency through Deep Reinforcement Learning Copyright An Approach to Testing Banking Software Using Metamorphic Relations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1