An Application of RBF Neural Networks for Petroleum Reservoir Characterization

Y. Tian, Qinghong Zhang, Guojian Cheng, Xuanchao Liu
{"title":"An Application of RBF Neural Networks for Petroleum Reservoir Characterization","authors":"Y. Tian, Qinghong Zhang, Guojian Cheng, Xuanchao Liu","doi":"10.1109/GCIS.2012.75","DOIUrl":null,"url":null,"abstract":"The parameter calculation relating to petroleum reservoir characterization and lithologic identification based on RBF neural networks is studied in this paper. Two models for reservoir permeability prediction and litho logic identification have been constructed and are applied to predict the unknown samples. The prediction result of reservoir permeability has a higher consistency with the practical cases. The parameter prediction and litho logic identification precision have been greatly improved compared to the traditional BP neural networks. The results show that the RBF neural network is very promising for the application of petroleum reservoir characterization.","PeriodicalId":337629,"journal":{"name":"2012 Third Global Congress on Intelligent Systems","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third Global Congress on Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCIS.2012.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The parameter calculation relating to petroleum reservoir characterization and lithologic identification based on RBF neural networks is studied in this paper. Two models for reservoir permeability prediction and litho logic identification have been constructed and are applied to predict the unknown samples. The prediction result of reservoir permeability has a higher consistency with the practical cases. The parameter prediction and litho logic identification precision have been greatly improved compared to the traditional BP neural networks. The results show that the RBF neural network is very promising for the application of petroleum reservoir characterization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RBF神经网络在油藏表征中的应用
本文研究了基于RBF神经网络的油藏表征和岩性识别参数计算。建立了储层渗透率预测模型和岩性识别模型,并将其应用于未知样品的预测。储层渗透率预测结果与实际情况具有较高的一致性。与传统的BP神经网络相比,参数预测和岩性识别精度有了很大提高。结果表明,RBF神经网络在油气储层表征中具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Temperature Prediction Based on Different Meteorological Series The Design and Application for a Bio-inspired Nonlinear Intelligent Controller Problem-Specific Knowledge Based Heuristic Algorithm to Solve Satellite Broadcast Scheduling Problem Micro Pitch and Vary Speed for Extreme Value Search MPPT Method of DFIG Academic Relation Classification Rules Extraction with Correlation Feature Weight Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1