A Study on Evolutionary Algorithms and Its Applications

P. Bharathi, D. Pallavi, M. Ramachandran, Kurinjimalar Ramu, Chinnasami Sivaji
{"title":"A Study on Evolutionary Algorithms and Its Applications","authors":"P. Bharathi, D. Pallavi, M. Ramachandran, Kurinjimalar Ramu, Chinnasami Sivaji","doi":"10.46632/eae/1/1/1","DOIUrl":null,"url":null,"abstract":". Evolutionary methods are a horror-based approach to solving problems that are not easily solved in polynomial time, for example, classical NP-heart problems and take longer to complete. Evolutionary methods are commonly used to provide good approximate solutions to problems that cannot be easily solved using other techniques. Many optimization issues fall into this category. It can be very calculated- finding a suitable solution is serious but sometimes the optimal solution is enough. Major classes of contemporaries (in the order of popularity) E.A. Genetic algorithms (GAs), evolutionary strategies (ESs), differential evolution (DE) and distribution algorithm evaluation (EDAs) are used. Evolutionary methods are based on the concepts of biological evolution. The 'population' of possible solutions to the problem will be created first, and each solution will be evaluated using a 'fitness function'. The population develops over time and (hopefully) identifies the best solutions.","PeriodicalId":446446,"journal":{"name":"Electrical and Automation Engineering","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46632/eae/1/1/1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

. Evolutionary methods are a horror-based approach to solving problems that are not easily solved in polynomial time, for example, classical NP-heart problems and take longer to complete. Evolutionary methods are commonly used to provide good approximate solutions to problems that cannot be easily solved using other techniques. Many optimization issues fall into this category. It can be very calculated- finding a suitable solution is serious but sometimes the optimal solution is enough. Major classes of contemporaries (in the order of popularity) E.A. Genetic algorithms (GAs), evolutionary strategies (ESs), differential evolution (DE) and distribution algorithm evaluation (EDAs) are used. Evolutionary methods are based on the concepts of biological evolution. The 'population' of possible solutions to the problem will be created first, and each solution will be evaluated using a 'fitness function'. The population develops over time and (hopefully) identifies the best solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
进化算法及其应用研究
. 进化方法是一种基于恐惧的方法,用于解决不容易在多项式时间内解决的问题,例如,经典的NP-heart问题,需要更长的时间来完成。进化方法通常用于为使用其他技术无法轻松解决的问题提供良好的近似解决方案。许多优化问题都属于这一类。它可能是经过精心计算的——找到一个合适的解决方案是很严肃的,但有时最优解决方案就足够了。主要类别的同时代(按受欢迎程度排序)E.A.遗传算法(GAs),进化策略(ESs),差分进化(DE)和分布算法评估(EDAs)被使用。进化方法是以生物进化的概念为基础的。首先创建问题的可能解决方案的“总体”,然后使用“适应度函数”评估每个解决方案。人口随着时间的推移而发展,并(希望)确定最佳解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Power System Fault Detection and Analysis Using Numerical Relay in Power grid Corporation Limited, Shoolagiri Wireless Charging of Electric Vehicle While Moving with dual input Sources Novel Application of Furniture Product Using Augmented Reality Finger Print Sensing Vehicle Starter Heart Attack Detection and Heart Rate Monitoring System Using IOT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1