Learning the Kernel Combination for Object Categorization

Deyuan Zhang, Xiaolong Wang, Bingquan Liu
{"title":"Learning the Kernel Combination for Object Categorization","authors":"Deyuan Zhang, Xiaolong Wang, Bingquan Liu","doi":"10.1109/ICPR.2010.718","DOIUrl":null,"url":null,"abstract":"Although Support Vector Machines(SVM) succeed in classifying several image databases using image descriptors proposed in the literature, no single descriptor can be optimal for general object categorization. This paper describes a novel framework to learn the optimal combination of kernels corresponding to multiple image descriptors before SVM training, leading to solve a quadratic programming problem efficiently. Our framework takes into account the variation of kernel matrix and imbalanced dataset, which are common in real world image categorization tasks. Experimental results on Graz-01 and Caltech-101 image databases show the effectiveness and robustness of our algorithm.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Although Support Vector Machines(SVM) succeed in classifying several image databases using image descriptors proposed in the literature, no single descriptor can be optimal for general object categorization. This paper describes a novel framework to learn the optimal combination of kernels corresponding to multiple image descriptors before SVM training, leading to solve a quadratic programming problem efficiently. Our framework takes into account the variation of kernel matrix and imbalanced dataset, which are common in real world image categorization tasks. Experimental results on Graz-01 and Caltech-101 image databases show the effectiveness and robustness of our algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习用于对象分类的核组合
尽管支持向量机(SVM)使用文献中提出的图像描述符成功地对多个图像数据库进行了分类,但对于一般对象分类,没有单一的描述符是最优的。本文提出了一种新的框架,在支持向量机训练前学习多个图像描述符对应的核的最优组合,从而有效地解决二次规划问题。我们的框架考虑了核矩阵的变化和不平衡数据集,这是在现实世界的图像分类任务中常见的。在grazi -01和Caltech-101图像数据库上的实验结果表明了该算法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Comprehensive Evaluation on Non-deterministic Motion Estimation Coarse Scale Feature Extraction Using the Spiral Architecture Structure Research the Performance of a Recursive Algorithm of the Local Discrete Wavelet Transform Underwater Mine Classification with Imperfect Labels Scribe Identification in Medieval English Manuscripts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1