{"title":"Feature Selection for Twitter Classification","authors":"D. Ostrowski","doi":"10.1109/ICSC.2014.50","DOIUrl":null,"url":null,"abstract":"Twitter-based messages have presented challenges in the identification of features as applied to classification. This paper explores filtering techniques for improved trend detection and information extraction. Starting with a pre-filtered source (Twitter), we will examine the application of both information theory and Natural Language Processing (NLP) based techniques as a means of preprocessing for classification. Results demonstrate that both means allow for improved results in classification among highly idiosyncratic data (Twitter).","PeriodicalId":175352,"journal":{"name":"2014 IEEE International Conference on Semantic Computing","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2014.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Twitter-based messages have presented challenges in the identification of features as applied to classification. This paper explores filtering techniques for improved trend detection and information extraction. Starting with a pre-filtered source (Twitter), we will examine the application of both information theory and Natural Language Processing (NLP) based techniques as a means of preprocessing for classification. Results demonstrate that both means allow for improved results in classification among highly idiosyncratic data (Twitter).