A. Quddus, Ajmal Shah, K. Qureshi, M. K. Ayub, M. Iqbal, N. A. Khan, Haseeb Afzal, Shumail Hassan
{"title":"Experimental Study on Steam Cavity Characteristics for Swirled Flow Nozzle Exhausting into Quiescent Water","authors":"A. Quddus, Ajmal Shah, K. Qureshi, M. K. Ayub, M. Iqbal, N. A. Khan, Haseeb Afzal, Shumail Hassan","doi":"10.3390/engproc2022023028","DOIUrl":null,"url":null,"abstract":": The steam–water direct contact condensation (DCC) process is commonly observed in various industries due to its fast heat and mass exchange characteristics. This study investigates steam plume characteristics by experimentally condensing the steam jet issuing from a swirled flow spray nozzle into stagnant subcooled water. On the basis of high-speed imaging, the effects of subcooled water temperatures on the cavity shape, its length, and maximum expansion ratio were explored. The existence of three distinct cavity shapes (ellipsoidal, double expansion–contraction and divergent) were identified. The dimensionless steam cavity penetration length and maximum expansion ratio were found to be in the range of 6.28–11.5 and 1.71–3.06, respectively. The results indicate that with the rise in water temperature, plume length and maximum expansion ratio increase.","PeriodicalId":319198,"journal":{"name":"ICAME-22","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICAME-22","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/engproc2022023028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
: The steam–water direct contact condensation (DCC) process is commonly observed in various industries due to its fast heat and mass exchange characteristics. This study investigates steam plume characteristics by experimentally condensing the steam jet issuing from a swirled flow spray nozzle into stagnant subcooled water. On the basis of high-speed imaging, the effects of subcooled water temperatures on the cavity shape, its length, and maximum expansion ratio were explored. The existence of three distinct cavity shapes (ellipsoidal, double expansion–contraction and divergent) were identified. The dimensionless steam cavity penetration length and maximum expansion ratio were found to be in the range of 6.28–11.5 and 1.71–3.06, respectively. The results indicate that with the rise in water temperature, plume length and maximum expansion ratio increase.