Link-based cluster ensembles for heterogeneous biological data analysis

Natthakan Iam-on, Simon M. Garrett, C. Price, Tossapon Boongoen
{"title":"Link-based cluster ensembles for heterogeneous biological data analysis","authors":"Natthakan Iam-on, Simon M. Garrett, C. Price, Tossapon Boongoen","doi":"10.1109/BIBM.2010.5706631","DOIUrl":null,"url":null,"abstract":"Clinical data has been employed as the major factor for traditional cancer prognosis. However, this classic approach may be ineffective for analyzing morphologically indistinguishable tumor subtypes. As such, the microarray technology emerges as the promising alternative. Despite a large number of microarray studies, the actual clinical application of gene expression data analysis remains limited due to the complexity of generated data and the noise level. Recently, the integrative cluster analysis of both clinical and gene expression data has shown to be an effective alternative to overcome the above-mentioned problems. This paper presents a novel method for using cluster ensembles that is accurate for analyzing heterogeneous biological data. It overcomes the problem of selecting an appropriate clustering algorithm or parameter setting of any potential candidate, especially with a new set of data. The evaluation on real biological and benchmark datasets suggests that the quality of the proposed model is higher than many state-of-the-art cluster ensemble techniques and standard clustering algorithms. Also, its performance is robust to the parameter perturbation, thus providing a reliable and useful means for data analysts and bioinformaticians. Online supplementary is available at http://users.aber.ac.uk/nii07/bibm2010.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Clinical data has been employed as the major factor for traditional cancer prognosis. However, this classic approach may be ineffective for analyzing morphologically indistinguishable tumor subtypes. As such, the microarray technology emerges as the promising alternative. Despite a large number of microarray studies, the actual clinical application of gene expression data analysis remains limited due to the complexity of generated data and the noise level. Recently, the integrative cluster analysis of both clinical and gene expression data has shown to be an effective alternative to overcome the above-mentioned problems. This paper presents a novel method for using cluster ensembles that is accurate for analyzing heterogeneous biological data. It overcomes the problem of selecting an appropriate clustering algorithm or parameter setting of any potential candidate, especially with a new set of data. The evaluation on real biological and benchmark datasets suggests that the quality of the proposed model is higher than many state-of-the-art cluster ensemble techniques and standard clustering algorithms. Also, its performance is robust to the parameter perturbation, thus providing a reliable and useful means for data analysts and bioinformaticians. Online supplementary is available at http://users.aber.ac.uk/nii07/bibm2010.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
异构生物数据分析的基于链接的聚类集成
临床资料是传统癌症预后的主要因素。然而,这种经典的方法可能对分析形态学上难以区分的肿瘤亚型无效。因此,微阵列技术成为一种有前途的替代方案。尽管进行了大量的微阵列研究,但由于生成数据的复杂性和噪声水平,基因表达数据分析的实际临床应用仍然有限。最近,临床和基因表达数据的综合聚类分析已被证明是克服上述问题的有效替代方法。本文提出了一种利用聚类集成准确分析异质生物数据的新方法。它克服了选择合适的聚类算法或任何潜在候选参数设置的问题,特别是对于一组新的数据。对真实生物和基准数据集的评估表明,该模型的质量高于许多最先进的聚类集成技术和标准聚类算法。此外,该方法对参数扰动具有较强的鲁棒性,为数据分析和生物信息学家提供了可靠和有用的方法。网上补充资料可在http://users.aber.ac.uk/nii07/bibm2010找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A gene ranking method using text-mining for the identification of disease related genes alns — A searchable and filterable sequence alignment format A fast and noise-adaptive rough-fuzzy hybrid algorithm for medical image segmentation An accurate, automatic method for markerless alignment of electron tomographic images Unsupervised integration of multiple protein disorder predictors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1