An Effective Feature Selection method using Monte Carlo Search

Muhammad Umar Chaudhry, Sang-Wook Kim, Jee-Hyong Lee
{"title":"An Effective Feature Selection method using Monte Carlo Search","authors":"Muhammad Umar Chaudhry, Sang-Wook Kim, Jee-Hyong Lee","doi":"10.1145/3129676.3130240","DOIUrl":null,"url":null,"abstract":"Feature selection is the challenging problem in the field of machine learning. The task is to identify the optimal feature subset by eliminating the redundant and irrelevant features from the dataset. The problem becomes more complicated when dealing with high-dimensional datasets. In this paper, we propose the novel technique based on Monte Carlo Tree Search (MCTS) to find the best feature subset to classify the dataset in hand. The effectiveness and validity of the proposed method is demonstrated by experimenting on many real world datasets.","PeriodicalId":326100,"journal":{"name":"Proceedings of the International Conference on Research in Adaptive and Convergent Systems","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Research in Adaptive and Convergent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3129676.3130240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Feature selection is the challenging problem in the field of machine learning. The task is to identify the optimal feature subset by eliminating the redundant and irrelevant features from the dataset. The problem becomes more complicated when dealing with high-dimensional datasets. In this paper, we propose the novel technique based on Monte Carlo Tree Search (MCTS) to find the best feature subset to classify the dataset in hand. The effectiveness and validity of the proposed method is demonstrated by experimenting on many real world datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种有效的蒙特卡罗搜索特征选择方法
特征选择是机器学习领域中具有挑战性的问题。任务是通过消除数据集中冗余和不相关的特征来识别最优特征子集。当处理高维数据集时,问题变得更加复杂。在本文中,我们提出了一种基于蒙特卡罗树搜索(MCTS)的新技术来寻找最佳的特征子集来对手头的数据集进行分类。通过对大量真实数据集的实验,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Extrinsic Depth Camera Calibration Method for Narrow Field of View Color Camera Motion Mode Recognition for Traffic Safety in Campus Guiding Application Failure Prediction by Utilizing Log Analysis: A Systematic Mapping Study PerfNet Road Surface Profiling based on Artificial-Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1