Energy-aware Multiple Access Using Deep Reinforcement Learning

H. Mazandarani, S. Khorsandi
{"title":"Energy-aware Multiple Access Using Deep Reinforcement Learning","authors":"H. Mazandarani, S. Khorsandi","doi":"10.1109/ICEE52715.2021.9544417","DOIUrl":null,"url":null,"abstract":"Deep Reinforcement Learning (DRL), as an emerging trend in the reinforcement learning paradigm, has recently been used for multiple access of wireless nodes to frequency spectrum. Although existing research works are promising in terms of frequency spectrum utilization, the concept of energy-awareness is missing. Nevertheless, the high energy-consumption of DRL algorithms is a serious concern, especially in battery-constrained Internet of Things (IoT) nodes. In this paper, a simple yet effective mechanism is introduced to reduce state size of the DRL algorithm, which results in reduction of energy consumption for IoT nodes. Our simulations indicate that state size can be reduced, without significant change in the system performance.","PeriodicalId":254932,"journal":{"name":"2021 29th Iranian Conference on Electrical Engineering (ICEE)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 29th Iranian Conference on Electrical Engineering (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEE52715.2021.9544417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep Reinforcement Learning (DRL), as an emerging trend in the reinforcement learning paradigm, has recently been used for multiple access of wireless nodes to frequency spectrum. Although existing research works are promising in terms of frequency spectrum utilization, the concept of energy-awareness is missing. Nevertheless, the high energy-consumption of DRL algorithms is a serious concern, especially in battery-constrained Internet of Things (IoT) nodes. In this paper, a simple yet effective mechanism is introduced to reduce state size of the DRL algorithm, which results in reduction of energy consumption for IoT nodes. Our simulations indicate that state size can be reduced, without significant change in the system performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用深度强化学习的能量感知多访问
深度强化学习(Deep Reinforcement Learning, DRL)作为强化学习范式的一个新兴趋势,近年来被用于无线节点对频谱的多址访问。虽然现有的研究工作在频谱利用方面很有希望,但缺乏能量意识的概念。然而,DRL算法的高能耗是一个严重的问题,特别是在电池有限的物联网(IoT)节点中。本文引入了一种简单而有效的机制来减小DRL算法的状态大小,从而降低物联网节点的能耗。我们的模拟表明,状态大小可以减少,而不会对系统性能产生重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Model for Backcasting the Environmental Sustainability in Iran's Electricity Supply Mix Multi WGAN-GP loss for pathological stain transformation using GAN Bit Error Rate Improvement in Optical Camera Communication Based on RGB LED Robust IDA-PBC for a Spatial Underactuated Cable Driven Robot with Bounded Inputs Switched Robust Model Predictive Based Controller for UAV Swarm System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1