Vegetation Evolution: An Optimization Algorithm Inspired by the Life Cycle of Plants

Jun Yu
{"title":"Vegetation Evolution: An Optimization Algorithm Inspired by the Life Cycle of Plants","authors":"Jun Yu","doi":"10.1142/s1469026822500109","DOIUrl":null,"url":null,"abstract":"In this paper, we have observed that different types of plants in nature can use their own survival mechanisms to adapt to various living environments. A new population-based vegetation evolution (VEGE) algorithm is proposed to solve optimization problems by interactively simulating the growth and maturity periods of plants. In the growth period, individuals explore their local areas and grow in potential directions, while individuals generate many seed individuals and spread them as widely as possible in the maturity period. The main contribution of our proposed VEGE is to balance exploitation and exploration from a novel perspective, which is to perform these two periods in alternation to switch between two different search capabilities. To evaluate the performance of the proposed VEGE, we compare it with three well-known algorithms in the evolutionary computation community: differential evolution, particle swarm optimization, and enhanced fireworks algorithm — and run them on 28 benchmark functions with 2-dimensions (2D), 10D, and 30D with 30 trial runs. The experimental results show that VEGE is efficient and promising in terms of faster convergence speed and higher accuracy. In addition, we further analyze the effects of the composition of VEGE on performance, and some open topics are also given.","PeriodicalId":422521,"journal":{"name":"Int. J. Comput. Intell. Appl.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Intell. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1469026822500109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we have observed that different types of plants in nature can use their own survival mechanisms to adapt to various living environments. A new population-based vegetation evolution (VEGE) algorithm is proposed to solve optimization problems by interactively simulating the growth and maturity periods of plants. In the growth period, individuals explore their local areas and grow in potential directions, while individuals generate many seed individuals and spread them as widely as possible in the maturity period. The main contribution of our proposed VEGE is to balance exploitation and exploration from a novel perspective, which is to perform these two periods in alternation to switch between two different search capabilities. To evaluate the performance of the proposed VEGE, we compare it with three well-known algorithms in the evolutionary computation community: differential evolution, particle swarm optimization, and enhanced fireworks algorithm — and run them on 28 benchmark functions with 2-dimensions (2D), 10D, and 30D with 30 trial runs. The experimental results show that VEGE is efficient and promising in terms of faster convergence speed and higher accuracy. In addition, we further analyze the effects of the composition of VEGE on performance, and some open topics are also given.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
植被进化:一种基于植物生命周期的优化算法
在本文中,我们观察到自然界中不同类型的植物可以利用自己的生存机制来适应不同的生存环境。提出了一种新的基于种群的植被进化算法,通过交互模拟植物的生长期和成熟期来解决优化问题。在生长期,个体探索其局部区域并向潜在方向生长,而在成熟期,个体产生许多种子个体并尽可能广泛地传播。我们提出的VEGE的主要贡献是从一个新的角度来平衡开发和探索,即交替执行这两个阶段,在两种不同的搜索功能之间切换。为了评估所提出的VEGE的性能,我们将其与进化计算界的三种知名算法(差分进化、粒子群优化和增强烟花算法)进行了比较,并在28个二维(2D)、10D和30D的基准函数上运行了30次试运行。实验结果表明,该算法具有更快的收敛速度和更高的精度。此外,我们进一步分析了VEGE的组成对性能的影响,并给出了一些开放的话题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CT Images Segmentation Using a Deep Learning-Based Approach for Preoperative Projection of Human Organ Model Using Augmented Reality Technology Styling Classification of Group Photos Fusing Head and Pose Features Genetic Algorithm-Based Optimal Resource Trust Line Prediction in Cloud Computing Shearlet Transform-Based Novel Method for Multimodality Medical Image Fusion Using Deep Learning An Energy-Efficient Clustering and Fuzzy-Based Path Selection for Flying Ad-Hoc Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1