A Heat-Recirculation-Aware VM Placement Strategy for Data Centers

Hao Feng, Yuhui Deng, Yi Zhou
{"title":"A Heat-Recirculation-Aware VM Placement Strategy for Data Centers","authors":"Hao Feng, Yuhui Deng, Yi Zhou","doi":"10.23919/DATE48585.2020.9116356","DOIUrl":null,"url":null,"abstract":"Data centers consisted of a great number of IT devices (e.g., servers, switches and etc.) which generates a massive amount of heat emission. Due to the special arrangement of racks in the data center, heat-recirculation often occurs between nodes. It can cause a sharp rise in temperature of the equipment coupled with local hot spots in data centers. Existing VM placement strategies can minimize energy consumption of data centers by optimizing resource allocation in terms of multiple physical resources (e.g., memory, bandwidth, cpu and etc.). However, existing strategies ignore the role of heat-recirculation in the data center. To address this problem, in this study, we propose a heat-recirculation-aware VM placement strategy and design a Simulated Annealing Based Algorithm (SABA) to lower the energy consumption of data centers. Different from the existing SA algorithm, SABA optimize the distribution of the initial solution and the way of iteration. We quantitatively evaluate SABA’s performance in terms of algorithm efficiency, the activated servers and the energy saving against with XINT-GA algorithm (Thermal-aware task scheduling Strategy), FCFS (First-Come First-Served), and SA. Experimental results indicate that our heat-recirculation-aware VM placement strategy provides a powerful solution for improving energy efficiency of data centers.","PeriodicalId":289525,"journal":{"name":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE48585.2020.9116356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Data centers consisted of a great number of IT devices (e.g., servers, switches and etc.) which generates a massive amount of heat emission. Due to the special arrangement of racks in the data center, heat-recirculation often occurs between nodes. It can cause a sharp rise in temperature of the equipment coupled with local hot spots in data centers. Existing VM placement strategies can minimize energy consumption of data centers by optimizing resource allocation in terms of multiple physical resources (e.g., memory, bandwidth, cpu and etc.). However, existing strategies ignore the role of heat-recirculation in the data center. To address this problem, in this study, we propose a heat-recirculation-aware VM placement strategy and design a Simulated Annealing Based Algorithm (SABA) to lower the energy consumption of data centers. Different from the existing SA algorithm, SABA optimize the distribution of the initial solution and the way of iteration. We quantitatively evaluate SABA’s performance in terms of algorithm efficiency, the activated servers and the energy saving against with XINT-GA algorithm (Thermal-aware task scheduling Strategy), FCFS (First-Come First-Served), and SA. Experimental results indicate that our heat-recirculation-aware VM placement strategy provides a powerful solution for improving energy efficiency of data centers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据中心热再循环感知VM放置策略
数据中心由大量的IT设备(如服务器、交换机等)组成,这些设备会产生大量的热量。由于数据中心机架的特殊布置,节点之间经常发生热循环。它可能导致设备温度急剧上升,再加上数据中心的局部热点。现有的虚拟机放置策略可以通过优化多个物理资源(如内存、带宽、cpu等)的资源分配来最小化数据中心的能源消耗。然而,现有的策略忽略了数据中心热循环的作用。为了解决这一问题,本研究提出了一种热循环感知的VM放置策略,并设计了一种基于模拟退火的算法(SABA)来降低数据中心的能耗。与现有的SA算法不同,SABA算法优化了初始解的分布和迭代方式。我们从算法效率、激活服务器数量和节能三个方面定量评价了SABA算法与XINT-GA算法(热感知任务调度策略)、FCFS算法(先到先得)和SA算法的性能。实验结果表明,我们的热循环感知VM放置策略为提高数据中心的能源效率提供了强有力的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-Memory Resistive RAM Implementation of Binarized Neural Networks for Medical Applications Towards Formal Verification of Optimized and Industrial Multipliers A 100KHz-1GHz Termination-dependent Human Body Communication Channel Measurement using Miniaturized Wearable Devices Computational SRAM Design Automation using Pushed-Rule Bitcells for Energy-Efficient Vector Processing PIM-Aligner: A Processing-in-MRAM Platform for Biological Sequence Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1