Filtering Global History: Power and Performance Efficient Branch Predictor

R. Ayoub, A. Orailoglu
{"title":"Filtering Global History: Power and Performance Efficient Branch Predictor","authors":"R. Ayoub, A. Orailoglu","doi":"10.1109/ASAP.2009.26","DOIUrl":null,"url":null,"abstract":"In this paper we present an Application Customizable Branch Predictor, ACBP, that delivers efficiency in energy savings and performance without compromising prediction accuracy. The idea of our technique is to filter unnecessary global history information within the global history register to minimize the predictor size while maintaining prediction accuracy. We suggest in this work an efficient algorithm to capture the beneficial correlations. A cost-efficient and programmable hardware architecture is presented. Extensive experimental analysis confirms significant improvements in power savings and latency, ranging up to 84% and 30%,respectively.","PeriodicalId":202421,"journal":{"name":"2009 20th IEEE International Conference on Application-specific Systems, Architectures and Processors","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 20th IEEE International Conference on Application-specific Systems, Architectures and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2009.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we present an Application Customizable Branch Predictor, ACBP, that delivers efficiency in energy savings and performance without compromising prediction accuracy. The idea of our technique is to filter unnecessary global history information within the global history register to minimize the predictor size while maintaining prediction accuracy. We suggest in this work an efficient algorithm to capture the beneficial correlations. A cost-efficient and programmable hardware architecture is presented. Extensive experimental analysis confirms significant improvements in power savings and latency, ranging up to 84% and 30%,respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
过滤全局历史:功率和性能高效分支预测器
在本文中,我们提出了一个应用可定制分支预测器,ACBP,它在不影响预测准确性的情况下提供了节能和性能的效率。我们的技术思想是在全局历史寄存器中过滤不必要的全局历史信息,以最小化预测器的大小,同时保持预测的准确性。在这项工作中,我们提出了一种有效的算法来捕获有益的相关性。提出了一种低成本、可编程的硬件结构。大量的实验分析证实了在节能和延迟方面的显著改进,分别提高了84%和30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient Implementation of Carry-Save Adders in FPGAs Evaluating Various Branch-Prediction Schemes for Biomedical-Implant Processors A Combined Decimal and Binary Floating-Point Multiplier Integral Parallel Architecture & Berkeley's Motifs NeMo: A Platform for Neural Modelling of Spiking Neurons Using GPUs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1