Parallel Filter Trust Region Algorithm for Partially Separable Problems

Li Sun, Weijie Shi
{"title":"Parallel Filter Trust Region Algorithm for Partially Separable Problems","authors":"Li Sun, Weijie Shi","doi":"10.1109/ICINIS.2008.49","DOIUrl":null,"url":null,"abstract":"We propose a parallelization of the multidimensional filter trust region methods to make them suitable for large scale problems. The parallelization reduces the storage problems caused by storing the filter point. The limited memory BFGS method is employed to obtain the Hessian approximation in the quadratic model of the trust region methods, which often yields a dramatic reduction in the number of function and gradient evaluation. As the special structure of the partially separable functions, each processor has to solve the subproblem in a lower dimensional subspace. Numerical results show that the parallelization is efficient.","PeriodicalId":185739,"journal":{"name":"2008 First International Conference on Intelligent Networks and Intelligent Systems","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 First International Conference on Intelligent Networks and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINIS.2008.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a parallelization of the multidimensional filter trust region methods to make them suitable for large scale problems. The parallelization reduces the storage problems caused by storing the filter point. The limited memory BFGS method is employed to obtain the Hessian approximation in the quadratic model of the trust region methods, which often yields a dramatic reduction in the number of function and gradient evaluation. As the special structure of the partially separable functions, each processor has to solve the subproblem in a lower dimensional subspace. Numerical results show that the parallelization is efficient.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
部分可分问题的并行滤波信赖域算法
我们提出了一种并行化的多维滤波器信任域方法,使其适用于大规模问题。并行化减少了由于存储过滤点而引起的存储问题。利用有限记忆BFGS方法在信赖域方法的二次模型中获得Hessian近似,通常可以大大减少函数和梯度求值的数量。由于部分可分函数的特殊结构,每个处理器都必须在低维子空间中求解子问题。数值结果表明,并行化是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Cooperation Method of Product Quality Control Based on Holonic Structure PDE-Based Parallel Deformable Registration on a Dual Core Cluster A Traffic Congestion Estimation Approach from Video Using Time-Spatial Imagery A Model Supporting Any Product Code Standard for the Resource Addressing in the Internet of Things Research of Measurement on Insulator's Contact Angles Based on Image Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1