Structured clustering with automatic kernel adaptation

Weike Pan, J. Kwok
{"title":"Structured clustering with automatic kernel adaptation","authors":"Weike Pan, J. Kwok","doi":"10.1109/IJCNN.2011.6033377","DOIUrl":null,"url":null,"abstract":"Clustering is an invaluable data analysis tool in a variety of applications. However, existing algorithms often assume that the clusters do not have any structural relationship. Hence, they may not work well in situations where such structural relationships are present (e.g., it may be given that the document clusters are residing in a hierarchy). Recently, the development of the kernel-based structured clustering algorithm CLUHSIC [9] tries to alleviate this problem. But since the input kernel matrix is defined purely based on the feature vectors of the input data, it does not take the output clustering structure into account. Consequently, a direct alignment of the input and output kernel matrices may not assure good performance. In this paper, we reduce this mismatch by learning a better input kernel matrix using techniques from semi-supervised kernel learning. We combine manifold information and output structure information with pairwise clustering constraints that are automatically generated during the clustering process. Experiments on a number of data sets show that the proposed method outperforms existing structured clustering algorithms.","PeriodicalId":415833,"journal":{"name":"The 2011 International Joint Conference on Neural Networks","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2011.6033377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Clustering is an invaluable data analysis tool in a variety of applications. However, existing algorithms often assume that the clusters do not have any structural relationship. Hence, they may not work well in situations where such structural relationships are present (e.g., it may be given that the document clusters are residing in a hierarchy). Recently, the development of the kernel-based structured clustering algorithm CLUHSIC [9] tries to alleviate this problem. But since the input kernel matrix is defined purely based on the feature vectors of the input data, it does not take the output clustering structure into account. Consequently, a direct alignment of the input and output kernel matrices may not assure good performance. In this paper, we reduce this mismatch by learning a better input kernel matrix using techniques from semi-supervised kernel learning. We combine manifold information and output structure information with pairwise clustering constraints that are automatically generated during the clustering process. Experiments on a number of data sets show that the proposed method outperforms existing structured clustering algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有自动核适应的结构化聚类
聚类是各种应用程序中非常宝贵的数据分析工具。然而,现有的算法通常假设聚类之间没有任何结构关系。因此,在存在这种结构关系的情况下(例如,可能假定文档集群驻留在层次结构中),它们可能不能很好地工作。最近,基于核的结构化聚类算法CLUHSIC[9]的发展试图缓解这一问题。但是由于输入核矩阵是纯粹基于输入数据的特征向量来定义的,所以它没有考虑输出的聚类结构。因此,输入和输出核矩阵的直接对齐可能无法保证良好的性能。在本文中,我们通过使用半监督核学习技术学习更好的输入核矩阵来减少这种不匹配。我们将流形信息和输出结构信息与聚类过程中自动生成的成对聚类约束相结合。在大量数据集上的实验表明,该方法优于现有的结构化聚类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaos of protein folding EEG-based brain dynamics of driving distraction Residential energy system control and management using adaptive dynamic programming How the core theory of CLARION captures human decision-making Wiener systems for reconstruction of missing seismic traces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1