A review of aligners for protein protein interaction networks

Anooja Ali, R. Viswanath, S. Patil, K. Venugopal
{"title":"A review of aligners for protein protein interaction networks","authors":"Anooja Ali, R. Viswanath, S. Patil, K. Venugopal","doi":"10.1109/RTEICT.2017.8256879","DOIUrl":null,"url":null,"abstract":"Protein Protein Interaction (PPI) can be considered as network. Alignment is the process of mapping nodes from one network to another network. The main objective of network alignment is to identify small, well defined interactome units such as protein complexes or conserved pathways that are analogous in the input network. Network alignment uncovers the relationship between protein complexes and functions. Similarity between two graph structures can be identified by evaluating the topology. Network alignment identifies either topological or sequential similarity. Gene annotations reveal the functional or sequential similarity and it can be evaluated based on semantic similarity. In this paper, we review the various network aligners and classify them according to the methodologies. We discuss the different evaluation metrics and the popular databases of protein interactions.","PeriodicalId":342831,"journal":{"name":"2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTEICT.2017.8256879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Protein Protein Interaction (PPI) can be considered as network. Alignment is the process of mapping nodes from one network to another network. The main objective of network alignment is to identify small, well defined interactome units such as protein complexes or conserved pathways that are analogous in the input network. Network alignment uncovers the relationship between protein complexes and functions. Similarity between two graph structures can be identified by evaluating the topology. Network alignment identifies either topological or sequential similarity. Gene annotations reveal the functional or sequential similarity and it can be evaluated based on semantic similarity. In this paper, we review the various network aligners and classify them according to the methodologies. We discuss the different evaluation metrics and the popular databases of protein interactions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蛋白质相互作用网络对准子的研究进展
蛋白质相互作用(PPI)可以看作是一个网络。对齐是将节点从一个网络映射到另一个网络的过程。网络比对的主要目标是识别小的、定义良好的相互作用单元,如蛋白质复合物或在输入网络中类似的保守通路。网络比对揭示了蛋白质复合物和功能之间的关系。两个图结构之间的相似性可以通过评估拓扑来识别。网络对齐标识拓扑或顺序相似性。基因注释揭示了功能或序列上的相似度,可以基于语义相似度进行评估。在本文中,我们回顾了各种网络定位器,并根据它们的方法进行了分类。我们讨论了不同的评价指标和流行的蛋白质相互作用数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mailbox based inter-processor communication in SoC Comparative analysis of field oriented control of BLDC motor using SPWM and SVPWM techniques Design and simulation of synchronous buck converter for LED application Factors inhibiting the adoption of DevOps in large organisations: South African context Vertically automated rotary parking system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1