Tianwei Xing, S. Sandha, Bharathan Balaji, Supriyo Chakraborty, M. Srivastava
{"title":"Enabling Edge Devices that Learn from Each Other: Cross Modal Training for Activity Recognition","authors":"Tianwei Xing, S. Sandha, Bharathan Balaji, Supriyo Chakraborty, M. Srivastava","doi":"10.1145/3213344.3213351","DOIUrl":null,"url":null,"abstract":"Edge devices rely extensively on machine learning for intelligent inferences and pattern matching. However, edge devices use a multitude of sensing modalities and are exposed to wide ranging contexts. It is difficult to develop separate machine learning models for each scenario as manual labeling is not scalable. To reduce the amount of labeled data and to speed up the training process, we propose to transfer knowledge between edge devices by using unlabeled data. Our approach, called RecycleML, uses cross modal transfer to accelerate the learning of edge devices across different sensing modalities. Using human activity recognition as a case study, over our collected CMActivity dataset, we observe that RecycleML reduces the amount of required labeled data by at least 90% and speeds up the training process by up to 50 times in comparison to training the edge device from scratch.","PeriodicalId":433649,"journal":{"name":"Proceedings of the 1st International Workshop on Edge Systems, Analytics and Networking","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st International Workshop on Edge Systems, Analytics and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3213344.3213351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
Abstract
Edge devices rely extensively on machine learning for intelligent inferences and pattern matching. However, edge devices use a multitude of sensing modalities and are exposed to wide ranging contexts. It is difficult to develop separate machine learning models for each scenario as manual labeling is not scalable. To reduce the amount of labeled data and to speed up the training process, we propose to transfer knowledge between edge devices by using unlabeled data. Our approach, called RecycleML, uses cross modal transfer to accelerate the learning of edge devices across different sensing modalities. Using human activity recognition as a case study, over our collected CMActivity dataset, we observe that RecycleML reduces the amount of required labeled data by at least 90% and speeds up the training process by up to 50 times in comparison to training the edge device from scratch.