A Modified Decomposition Algorithm for Maximum Weight Bipartite Matching and Its Experimental Evaluation

Shibsankar Das
{"title":"A Modified Decomposition Algorithm for Maximum Weight Bipartite Matching and Its Experimental Evaluation","authors":"Shibsankar Das","doi":"10.7561/SACS.2020.1.39","DOIUrl":null,"url":null,"abstract":"Let G be an undirected bipartite graph with positive integer weights on the edges. We refine the existing decomposition theorem originally proposed by Kao et al., for computing maximum weight bipartite matching. We apply it to design an efficient version of the decomposition algorithm to compute the weight of a maximum weight bipartite matching of G in O(|V |W /k(|V |, W /N))-time by employing an algorithm designed by Feder and Motwani as a subroutine, where |V | and N denote the number of nodes and the maximum edge weight of G, respectively and k(x, y) = log x/ log(x 2 /y). The parameter W is smaller than the total edge weight W, essentially when the largest edge weight differs by more than one from the second largest edge weight in the current working graph in any decomposition step of the algorithm. In best case W = O(|E|) where |E| be the number of edges of G and in worst case W = W, that is, |E| ≤ W ≤ W. In addition, we talk about a scaling property of the algorithm and research a better bound of the parameter W. An experimental evaluation on randomly generated data shows that the proposed improvement is significant in general.","PeriodicalId":394919,"journal":{"name":"Sci. Ann. Comput. Sci.","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sci. Ann. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7561/SACS.2020.1.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Let G be an undirected bipartite graph with positive integer weights on the edges. We refine the existing decomposition theorem originally proposed by Kao et al., for computing maximum weight bipartite matching. We apply it to design an efficient version of the decomposition algorithm to compute the weight of a maximum weight bipartite matching of G in O(|V |W /k(|V |, W /N))-time by employing an algorithm designed by Feder and Motwani as a subroutine, where |V | and N denote the number of nodes and the maximum edge weight of G, respectively and k(x, y) = log x/ log(x 2 /y). The parameter W is smaller than the total edge weight W, essentially when the largest edge weight differs by more than one from the second largest edge weight in the current working graph in any decomposition step of the algorithm. In best case W = O(|E|) where |E| be the number of edges of G and in worst case W = W, that is, |E| ≤ W ≤ W. In addition, we talk about a scaling property of the algorithm and research a better bound of the parameter W. An experimental evaluation on randomly generated data shows that the proposed improvement is significant in general.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种改进的最大权值二部匹配分解算法及其实验评价
设G是一个边权为正整数的无向二部图。我们改进了Kao等人最初提出的分解定理,用于计算最大权值二部匹配。我们利用Feder和Motwani设计的一种算法作为子程序,设计了一种高效的分解算法,在O(|V |W /k(|V |, W /N))时间内计算G的最大权值二部匹配的权值,其中|V |和N分别表示G的节点数和最大边权,k(x, y) = log x/ log(x2 /y)。参数W小于总边权W,本质上是指在算法的任意分解步骤中,当前工作图中最大边权与第二大边权相差大于1。在最佳情况下W = O(|E|),其中|E|为G的边数;在最坏情况下W = W,即|E|≤W≤W。此外,我们讨论了算法的缩放特性,并研究了参数W的较优界。对随机生成数据的实验评价表明,所提出的改进总体上是显著的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Describing weighted safety with weighted LTL over product omega-valuation monoids On Nirmala Indices of Some Hex-derived Networks of Type Three and Their Subdivision Networks Shrinkage Estimators for the Intercept in Linear and Uplift Regression A Teacher of Great Strengths Maximal Existential and Universal Width
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1