Real-Time Human Action Recognition Using Deep Learning Architecture

S. Kahlouche, M. Belhocine, Abdallah Menouar
{"title":"Real-Time Human Action Recognition Using Deep Learning Architecture","authors":"S. Kahlouche, M. Belhocine, Abdallah Menouar","doi":"10.1142/s1469026821500267","DOIUrl":null,"url":null,"abstract":"In this work, efficient human activity recognition (HAR) algorithm based on deep learning architecture is proposed to classify activities into seven different classes. In order to learn spatial and temporal features from only 3D skeleton data captured from a “Microsoft Kinect” camera, the proposed algorithm combines both convolution neural network (CNN) and long short-term memory (LSTM) architectures. This combination allows taking advantage of LSTM in modeling temporal data and of CNN in modeling spatial data. The captured skeleton sequences are used to create a specific dataset of interactive activities; these data are then transformed according to a view invariant and a symmetry criterion. To demonstrate the effectiveness of the developed algorithm, it has been tested on several public datasets and it has achieved and sometimes has overcome state-of-the-art performance. In order to verify the uncertainty of the proposed algorithm, some tools are provided and discussed to ensure its efficiency for continuous human action recognition in real time.","PeriodicalId":422521,"journal":{"name":"Int. J. Comput. Intell. Appl.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Intell. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1469026821500267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, efficient human activity recognition (HAR) algorithm based on deep learning architecture is proposed to classify activities into seven different classes. In order to learn spatial and temporal features from only 3D skeleton data captured from a “Microsoft Kinect” camera, the proposed algorithm combines both convolution neural network (CNN) and long short-term memory (LSTM) architectures. This combination allows taking advantage of LSTM in modeling temporal data and of CNN in modeling spatial data. The captured skeleton sequences are used to create a specific dataset of interactive activities; these data are then transformed according to a view invariant and a symmetry criterion. To demonstrate the effectiveness of the developed algorithm, it has been tested on several public datasets and it has achieved and sometimes has overcome state-of-the-art performance. In order to verify the uncertainty of the proposed algorithm, some tools are provided and discussed to ensure its efficiency for continuous human action recognition in real time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用深度学习架构的实时人体动作识别
本文提出了一种基于深度学习架构的高效人类活动识别(HAR)算法,将人类活动分为7类。为了仅从“微软Kinect”相机捕获的3D骨骼数据中学习空间和时间特征,该算法结合了卷积神经网络(CNN)和长短期记忆(LSTM)架构。这种组合可以利用LSTM建模时间数据和CNN建模空间数据的优势。捕获的骨架序列用于创建交互式活动的特定数据集;然后根据视图不变量和对称准则对这些数据进行转换。为了证明开发的算法的有效性,它已经在几个公共数据集上进行了测试,并且它已经达到甚至有时已经超越了最先进的性能。为了验证所提算法的不确定性,给出并讨论了一些工具,以保证算法对连续的实时人体动作识别的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CT Images Segmentation Using a Deep Learning-Based Approach for Preoperative Projection of Human Organ Model Using Augmented Reality Technology Styling Classification of Group Photos Fusing Head and Pose Features Genetic Algorithm-Based Optimal Resource Trust Line Prediction in Cloud Computing Shearlet Transform-Based Novel Method for Multimodality Medical Image Fusion Using Deep Learning An Energy-Efficient Clustering and Fuzzy-Based Path Selection for Flying Ad-Hoc Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1