{"title":"A comperative study on novel machine learning algorithms for estimation of energy performance of residential buildings","authors":"Yusuf Sonmez, U. Guvenc, H. Kahraman, C. Yilmaz","doi":"10.1109/SGCF.2015.7354915","DOIUrl":null,"url":null,"abstract":"This study aims to improve the energy performance of residential buildings. heating load (HL) and cooling load (CL) are considered as a measure of heating ventilation and air conditioning (HVAC) system in this process. In order to achive an effective estimation, hybrid machine learning algorithms including, artificial bee colony-based k-nearest neighbor (abc-knn), genetic algorithm-based knn (ga-knn), adaptive artificial neural network with genetic algorithm (ga-ann) and adaptive ann with artificial bee colony (abc-ann) are used. Results are compared classical knn and ann methods. Thence, relations between input and target parameters are defined and performance of well-known classical knn and ann is improved substantialy.","PeriodicalId":236483,"journal":{"name":"2015 3rd International Istanbul Smart Grid Congress and Fair (ICSG)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd International Istanbul Smart Grid Congress and Fair (ICSG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SGCF.2015.7354915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
This study aims to improve the energy performance of residential buildings. heating load (HL) and cooling load (CL) are considered as a measure of heating ventilation and air conditioning (HVAC) system in this process. In order to achive an effective estimation, hybrid machine learning algorithms including, artificial bee colony-based k-nearest neighbor (abc-knn), genetic algorithm-based knn (ga-knn), adaptive artificial neural network with genetic algorithm (ga-ann) and adaptive ann with artificial bee colony (abc-ann) are used. Results are compared classical knn and ann methods. Thence, relations between input and target parameters are defined and performance of well-known classical knn and ann is improved substantialy.