Robust Inference for Misspecified Models Conditional on Covariates

Alberto Abadie, G. Imbens, Fanyin Zheng
{"title":"Robust Inference for Misspecified Models Conditional on Covariates","authors":"Alberto Abadie, G. Imbens, Fanyin Zheng","doi":"10.3386/W17442","DOIUrl":null,"url":null,"abstract":"Following the work by White (1980ab; 1982) it is common in empirical work in economics to report standard errors that are robust against general misspecification. In a regression setting these standard errors are valid for the parameter that in the population minimizes the squared difference between the conditional expectation and the linear approximation, averaged over the population distribution of the covariates. In nonlinear settings a similar interpretation applies. In this note we discuss an alternative parameter that corresponds to the approximation to the conditional expectation based on minimization of the squared difference averaged over the sample, rather than the population, distribution of a subset of the variables. We argue that in some cases this may be a more interesting parameter. We derive the asymptotic variance for this parameter, generally smaller than the White robust variance, and we propose a consistent estimator for the asymptotic variance.","PeriodicalId":273058,"journal":{"name":"ERN: Model Construction & Estimation (Topic)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Model Construction & Estimation (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3386/W17442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Following the work by White (1980ab; 1982) it is common in empirical work in economics to report standard errors that are robust against general misspecification. In a regression setting these standard errors are valid for the parameter that in the population minimizes the squared difference between the conditional expectation and the linear approximation, averaged over the population distribution of the covariates. In nonlinear settings a similar interpretation applies. In this note we discuss an alternative parameter that corresponds to the approximation to the conditional expectation based on minimization of the squared difference averaged over the sample, rather than the population, distribution of a subset of the variables. We argue that in some cases this may be a more interesting parameter. We derive the asymptotic variance for this parameter, generally smaller than the White robust variance, and we propose a consistent estimator for the asymptotic variance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
协变量条件下错误模型的鲁棒推断
在White (1980ab;1982),在经济学的实证工作中,报告标准错误是很常见的,这些错误对一般的错误规范是强有力的。在回归设置中,这些标准误差对总体中条件期望与线性近似之间的平方差最小的参数有效,对协变量的总体分布进行平均。在非线性环境中,类似的解释也适用。在本文中,我们将讨论另一个参数,该参数对应于对条件期望的近似值,该近似值基于对样本平均值的平方差的最小化,而不是变量子集的总体分布。我们认为,在某些情况下,这可能是一个更有趣的参数。我们推导了该参数的渐近方差,通常小于怀特鲁棒方差,并提出了渐近方差的一致估计量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonparametric Tests of Conditional Independence for Time Series Estimating Demand with Multi-Homing in Two-Sided Markets Does Court Type, Size and Employee Satisfaction Affect Court Speed?. Hierarchical Linear Modelling With Evidence from Kenya Development of Estimation and Forecasting Method in Intelligent Decision Support Systems Estimating Financial Networks by Realized Interdependencies: A Restricted Autoregressive Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1