Peter Munk, Mohammad Shadi Al Hakeem, Raphael Lisicki, Helge Parzyjegla, Jan Richling, Hans-Ulrich Heiß
{"title":"Toward a Fault-Tolerance Framework for COTS Many-Core Systems","authors":"Peter Munk, Mohammad Shadi Al Hakeem, Raphael Lisicki, Helge Parzyjegla, Jan Richling, Hans-Ulrich Heiß","doi":"10.1109/EDCC.2015.32","DOIUrl":null,"url":null,"abstract":"Commercial-off-the-shelf (COTS) many-core processors offer the performance needed for computational-intensive safety-critical real-time applications such as autonomous driving. However, these consumer-grade many-core processors are increasingly susceptible to faults because of their highly integrated design. In this paper, we present a fault-tolerance framework that eases the usage of COTS many-core processors for safety-critical applications. Our framework employs an adaptable software-based fault-tolerance mechanism that combines N Modular Redundancy (NMR) with a repair process and a rejuvenating round robin voting scheme. A Stochastic Activity Network (SAN) model of the fault-tolerance mechanism allows the framework to adapt the parameters of the mechanism such that a specified target availability is achieved with minimum overhead. Experiments on a cycle-accurate simulator empirically prove the correctness of the SAN model and evaluate the overhead of the framework.","PeriodicalId":138826,"journal":{"name":"2015 11th European Dependable Computing Conference (EDCC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 11th European Dependable Computing Conference (EDCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDCC.2015.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Commercial-off-the-shelf (COTS) many-core processors offer the performance needed for computational-intensive safety-critical real-time applications such as autonomous driving. However, these consumer-grade many-core processors are increasingly susceptible to faults because of their highly integrated design. In this paper, we present a fault-tolerance framework that eases the usage of COTS many-core processors for safety-critical applications. Our framework employs an adaptable software-based fault-tolerance mechanism that combines N Modular Redundancy (NMR) with a repair process and a rejuvenating round robin voting scheme. A Stochastic Activity Network (SAN) model of the fault-tolerance mechanism allows the framework to adapt the parameters of the mechanism such that a specified target availability is achieved with minimum overhead. Experiments on a cycle-accurate simulator empirically prove the correctness of the SAN model and evaluate the overhead of the framework.